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Chapter 29
Magnetic Fields due to Currents



§ Magnetic Field due to Currents

§ Force Between Two Parallel Currents

§ Ampere’s Law

§ Solenoids 

§ Current-Carrying Coil as a Magnetic Dipole

Outlines  



Calculating the Magnetic Field due to a Current
To find the the magnetic field produced at point P due to the current i passing through a wire of length L:

� The wire is divided into differential elements ds

� The distance between P and ds is r

� dB produced by ds is given by 

 

  where θ : the angle between the directions of ds and ȓ 
             ȓ :  the unit vector  that points from ds toward P.    
            μ0 : the permeability constant
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W H AT  I S  P H YS I C S ?29-1 One basic observation of physics is that a moving charged particle
produces a magnetic field around itself. Thus a current of moving charged parti-
cles produces a magnetic field around the current. This feature of electromagnet-
ism, which is the combined study of electric and magnetic effects, came as a sur-
prise to the people who discovered it. Surprise or not, this feature has become
enormously important in everyday life because it is the basis of countless electro-
magnetic devices. For example, a magnetic field is produced in maglev trains and
other devices used to lift heavy loads.

Our first step in this chapter is to find the magnetic field due to the current in
a very small section of current-carrying wire.Then we shall find the magnetic field
due to the entire wire for several different arrangements of the wire.

29-2 Calculating the Magnetic Field 
Due to a Current

Figure 29-1 shows a wire of arbitrary shape carrying a current i. We want to find
the magnetic field at a nearby point P. We first mentally divide the wire into
differential elements ds and then define for each element a length vector that
has length ds and whose direction is the direction of the current in ds. We can
then define a differential current-length element to be i ; we wish to calculate
the field produced at P by a typical current-length element. From experiment
we find that magnetic fields, like electric fields, can be superimposed to find a net
field. Thus, we can calculate the net field at P by summing, via integration, theB
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Fig. 29-1 A current-length element 
i produces a differential magnetic
field at point P.The green (the
tail of an arrow) at the dot for point P
indicates that is directed into the
page there.
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This element of current creates a 
magnetic field at P, into the page.
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contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m 0 is a constant, called the permeability constant,
whose value is defined to be exactly

m 0 ! 4p " 10#7 T $ m/A ! 1.26 " 10#6 T $ m/A. (29-2)

The direction of , shown as being into the page in Fig. 29-1, is that of the cross
product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 shows
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.
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Fig. 29-2 The magnetic field lines pro-
duced by a current in a long straight wire
form concentric circles around the wire.
Here the current is into the page, as indi-
cated by the ".

Wire with current 
into the page 
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The magnetic field vector
at any point is tangent to
a circle.

Fig. 29-3 Iron filings
that have been sprinkled
onto cardboard collect in
concentric circles when
current is sent through the
central wire.The align-
ment, which is along
magnetic field lines, is
caused by the magnetic
field produced by the cur-
rent. (Courtesy Education
Development Center)

halliday_c29_764-790v2.qxd  3-12-2009  16:13  Page 765

76529-2 CALCU LATI NG TH E MAG N ETIC F I E LD  DU E TO A CU R R E NT
PART 3

HALLIDAY REVISED

contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m 0 is a constant, called the permeability constant,
whose value is defined to be exactly

m 0 ! 4p " 10#7 T $ m/A ! 1.26 " 10#6 T $ m/A. (29-2)

The direction of , shown as being into the page in Fig. 29-1, is that of the cross
product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.
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The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 shows
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
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contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m 0 is a constant, called the permeability constant,
whose value is defined to be exactly

m 0 ! 4p " 10#7 T $ m/A ! 1.26 " 10#6 T $ m/A. (29-2)

The direction of , shown as being into the page in Fig. 29-1, is that of the cross
product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 shows
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.
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contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be
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The representation of the magnetic field B when it is 
directed into the page or out of it.

S ECT I O N  29 . 2 •  Magnetic Force Acting on a Current-Carrying Conductor 901

perpendicular to and directed out of the page with a series of blue dots, which
represent the tips of arrows coming toward you (see Fig. 29.6a). In this case, we label
the field Bout. If B is directed perpendicularly into the page, we use blue crosses, which
represent the feathered tails of arrows fired away from you, as in Figure 29.6b. In this
case, we label the field Bin, where the subscript “in” indicates “into the page.” The
same notation with crosses and dots is also used for other quantities that might be per-
pendicular to the page, such as forces and current directions.

One can demonstrate the magnetic force acting on a current-carrying conductor
by hanging a wire between the poles of a magnet, as shown in Figure 29.7a. For ease in
visualization, part of the horseshoe magnet in part (a) is removed to show the end face
of the south pole in parts (b), (c), and (d) of Figure 29.7. The magnetic field is
directed into the page and covers the region within the shaded squares. When the
current in the wire is zero, the wire remains vertical, as shown in Figure 29.7b.
However, when the wire carries a current directed upward, as shown in Figure 29.7c,
the wire deflects to the left. If we reverse the current, as shown in Figure 29.7d, the
wire deflects to the right.

Let us quantify this discussion by considering a straight segment of wire of length L
and cross-sectional area A, carrying a current I in a uniform magnetic field B, as shown
in Figure 29.8. The magnetic force exerted on a charge q moving with a drift velocity
vd is q vd ! B. To find the total force acting on the wire, we multiply the force q vd ! B
exerted on one charge by the number of charges in the segment. Because the volume
of the segment is AL, the number of charges in the segment is nAL, where n is the
number of charges per unit volume. Hence, the total magnetic force on the wire of
length L is

We can write this expression in a more convenient form by noting that, from Equation
27.4, the current in the wire is I ! nqvdA. Therefore,

(29.3)

where L is a vector that points in the direction of the current I and has a magnitude
equal to the length L of the segment. Note that this expression applies only to a
straight segment of wire in a uniform magnetic field.
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Figure 29.6 (a) Magnetic field
lines coming out of the paper are
indicated by dots, representing the
tips of arrows coming outward. 
(b) Magnetic field lines going into
the paper are indicated by crosses,
representing the feathers of arrows
going inward.
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Figure 29.7 (a) A wire suspended vertically between the poles of a magnet. (b) The
setup shown in part (a) as seen looking at the south pole of the magnet, so that the
magnetic field (blue crosses) is directed into the page. When there is no current in
the wire, it remains vertical. (c) When the current is upward, the wire deflects to the
left. (d) When the current is downward, the wire deflects to the right.
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Figure 29.8 A segment of a
current-carrying wire in a magnetic
field B. The magnetic force
exerted on each charge making up
the current is q vd ! B and the net
force on the segment of length 
L is I L ! B.

Force on a segment of 
current-carrying wire in a 
uniform magnetic field
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Magnetic filed due to current in a long straight wire 

� The magnetic field at a perpendicular distance R from a long (infinite) straight wire carrying 
a current i is given by 

� The direction of B is determined by the right-hand-rule:
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Here is a simple right-hand rule for finding the direction of the magnetic field
set up by a current-length element, such as a section of a long wire:

Right-hand rule: Grasp the element in your right hand with your extended thumb
pointing in the direction of the current.Your fingers will then naturally curl around in
the direction of the magnetic field lines due to that element.

Fig. 29-5 Calculating the mag-
netic field produced by a current i in
a long straight wire.The field at P
associated with the current-length el-
ement i is directed into the page,
as shown.

ds:

dB
:

This element of current
creates a magnetic field
at P, into the page.

i 

θ  

d B  

P  
R  

s  r 

ds 

ˆ r 

The result of applying this right-hand rule to the current in the straight wire
of Fig. 29-2 is shown in a side view in Fig. 29-4a. To determine the direction of the
magnetic field set up at any particular point by this current, mentally wrap your
right hand around the wire with your thumb in the direction of the current. Let
your fingertips pass through the point; their direction is then the direction of the
magnetic field at that point. In the view of Fig. 29-2, at any point is tangent to
a magnetic field line; in the view of Fig. 29-4, it is perpendicular to a dashed radial
line connecting the point and the current.

Proof of Equation 29-4
Figure 29-5, which is just like Fig. 29-1 except that now the wire is straight and of
infinite length, illustrates the task at hand. We seek the field at point P, a per-
pendicular distance R from the wire. The magnitude of the differential magnetic
field produced at P by the current-length element i located a distance r from P
is given by Eq. 29-1:

The direction of in Fig. 29-5 is that of the vector  —namely, directly
into the page.

Note that at point P has this same direction for all the current-length
elements into which the wire can be divided. Thus, we can find the magnitude of
the magnetic field produced at P by the current-length elements in the upper half
of the infinitely long wire by integrating dB in Eq. 29-1 from 0 to !.

Now consider a current-length element in the lower half of the wire, one that
is as far below P as is above P. By Eq. 29-3, the magnetic field produced at P
by this current-length element has the same magnitude and direction as that from
element i in Fig. 29-5. Further, the magnetic field produced by the lower half
of the wire is exactly the same as that produced by the upper half. To find the
magnitude of the total magnetic field at P, we need only multiply the result of
our integration by 2.We get

(29-5)

The variables u, s, and r in this equation are not independent; Fig. 29-5 shows
that they are related by
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Fig. 29-4 A right-hand rule gives the di-
rection of the magnetic field due to a cur-
rent in a wire. (a) The situation of Fig. 29-2,
seen from the side.The magnetic field at
any point to the left of the wire is perpen-
dicular to the dashed radial line and di-
rected into the page, in the direction of the
fingertips, as indicated by the '. (b) If the
current is reversed, at any point to the
left is still perpendicular to the dashed ra-
dial line but now is directed out of the page,
as indicated by the dot.
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B B
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i The thumb is in the
current's direction.
The fingers reveal
the field vector's
direction, which is
tangent to a circle.
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contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m 0 is a constant, called the permeability constant,
whose value is defined to be exactly

m 0 ! 4p " 10#7 T $ m/A ! 1.26 " 10#6 T $ m/A. (29-2)

The direction of , shown as being into the page in Fig. 29-1, is that of the cross
product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 shows
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.
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Fig. 29-2 The magnetic field lines pro-
duced by a current in a long straight wire
form concentric circles around the wire.
Here the current is into the page, as indi-
cated by the ".

Wire with current 
into the page 

B 

B 

The magnetic field vector
at any point is tangent to
a circle.

Fig. 29-3 Iron filings
that have been sprinkled
onto cardboard collect in
concentric circles when
current is sent through the
central wire.The align-
ment, which is along
magnetic field lines, is
caused by the magnetic
field produced by the cur-
rent. (Courtesy Education
Development Center)

halliday_c29_764-790v2.qxd  3-12-2009  16:13  Page 765

766 CHAPTE R 29 MAG N ETIC F I E LDS DU E TO CU R R E NTS

HALLIDAY REVISED

Here is a simple right-hand rule for finding the direction of the magnetic field
set up by a current-length element, such as a section of a long wire:

Right-hand rule: Grasp the element in your right hand with your extended thumb
pointing in the direction of the current.Your fingers will then naturally curl around in
the direction of the magnetic field lines due to that element.

Fig. 29-5 Calculating the mag-
netic field produced by a current i in
a long straight wire.The field at P
associated with the current-length el-
ement i is directed into the page,
as shown.
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The result of applying this right-hand rule to the current in the straight wire
of Fig. 29-2 is shown in a side view in Fig. 29-4a. To determine the direction of the
magnetic field set up at any particular point by this current, mentally wrap your
right hand around the wire with your thumb in the direction of the current. Let
your fingertips pass through the point; their direction is then the direction of the
magnetic field at that point. In the view of Fig. 29-2, at any point is tangent to
a magnetic field line; in the view of Fig. 29-4, it is perpendicular to a dashed radial
line connecting the point and the current.

Proof of Equation 29-4
Figure 29-5, which is just like Fig. 29-1 except that now the wire is straight and of
infinite length, illustrates the task at hand. We seek the field at point P, a per-
pendicular distance R from the wire. The magnitude of the differential magnetic
field produced at P by the current-length element i located a distance r from P
is given by Eq. 29-1:

The direction of in Fig. 29-5 is that of the vector  —namely, directly
into the page.

Note that at point P has this same direction for all the current-length
elements into which the wire can be divided. Thus, we can find the magnitude of
the magnetic field produced at P by the current-length elements in the upper half
of the infinitely long wire by integrating dB in Eq. 29-1 from 0 to !.

Now consider a current-length element in the lower half of the wire, one that
is as far below P as is above P. By Eq. 29-3, the magnetic field produced at P
by this current-length element has the same magnitude and direction as that from
element i in Fig. 29-5. Further, the magnetic field produced by the lower half
of the wire is exactly the same as that produced by the upper half. To find the
magnitude of the total magnetic field at P, we need only multiply the result of
our integration by 2.We get

(29-5)

The variables u, s, and r in this equation are not independent; Fig. 29-5 shows
that they are related by
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Fig. 29-4 A right-hand rule gives the di-
rection of the magnetic field due to a cur-
rent in a wire. (a) The situation of Fig. 29-2,
seen from the side.The magnetic field at
any point to the left of the wire is perpen-
dicular to the dashed radial line and di-
rected into the page, in the direction of the
fingertips, as indicated by the '. (b) If the
current is reversed, at any point to the
left is still perpendicular to the dashed ra-
dial line but now is directed out of the page,
as indicated by the dot.
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i The thumb is in the
current's direction.
The fingers reveal
the field vector's
direction, which is
tangent to a circle.
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Current Carrying Wires

I

By moving compass around current-carrying wire 
à compass needle moves
à electric currents produce magnetic field B
à B circles around the wire

� B direction is determined by right-hand-rule (I)
(the extended thumb pointing in the direction of I, 
fingers will curl around in the direction of B) Thumb à I direction 

Fingers à B direction 
(tangent to a circle) 



For a current carrying wire:
� If current is going into the paper plane, B goes in (clockwise, counter-

clockwise) direction.
� If current is coming out of the paper plane, B goes in (clockwise, counter-

clockwise) direction.

B,C,A. Point B is closest to the current element. Point C is farther away and 
the field is further reduced by the sin factor in the cross product ds × r. The 
field at A is zero because ! = 0.

Example:
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where !0 is a constant called the permeability of free space:

(30.2)

Note that the field dB in Equation 30.1 is the field created by the current in only a
small length element ds of the conductor. To find the total magnetic field B created at
some point by a current of finite size, we must sum up contributions from all current
elements I ds that make up the current. That is, we must evaluate B by integrating
Equation 30.1:

(30.3)

where the integral is taken over the entire current distribution. This expression
must be handled with special care because the integrand is a cross product
and therefore a vector quantity. We shall see one case of such an integration in
Example 30.1.

Although we developed the Biot–Savart law for a current-carrying wire, it is also
valid for a current consisting of charges flowing through space, such as the electron
beam in a television set. In that case, ds represents the length of a small segment of
space in which the charges flow.

Interesting similarities exist between Equation 30.1 for the magnetic field due
to a current element and Equation 23.9 for the electric field due to a point charge.
The magnitude of the magnetic field varies as the inverse square of the distance
from the source, as does the electric field due to a point charge. However, the direc-
tions of the two fields are quite different. The electric field created by a point
charge is radial, but the magnetic field created by a current element is
perpendicular to both the length element ds and the unit vector r̂ , as described
by the cross product in Equation 30.1. Hence, if the conductor lies in the plane
of the page, as shown in Figure 30.1, dB points out of the page at P and into the
page at P ".

Another difference between electric and magnetic fields is related to the source
of the field. An electric field is established by an isolated electric charge. The
Biot–Savart law gives the magnetic field of an isolated current element at some
point, but such an isolated current element cannot exist the way an isolated electric
charge can. A current element must be part of an extended current distribution
because we must have a complete circuit in order for charges to flow. Thus,
the Biot–Savart law (Eq. 30.1) is only the first step in a calculation of a magnetic
field; it must be followed by an integration over the current distribution, as in
Equation 30.3.
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Quick Quiz 30.1 Consider the current in the length of wire shown in
Figure 30.2. Rank the points A, B, and C, in terms of magnitude of the magnetic field
due to the current in the length element shown, from greatest to least.

Permeability of free space

Figure 30.2 (Quick Quiz 30.1) Where is the magnetic field the greatest?
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B,C,A. Point B is closest to the current element. Point C is farther away and 
the field is further reduced by the sin factor in the cross product ds × r. The 
field at A is zero because ! = 0.

Example:

Example:

Biot-Savart law

L



For a current carrying wire:
� If current is going into a plane, B goes in (clockwise, counter-clockwise) 

direction.
� If current is coming out of a plane, B goes in (clockwise, counter-clockwise) 

direction.

928 CHAPTE R  3 0 •  Sources of the Magnetic Field
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contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m 0 is a constant, called the permeability constant,
whose value is defined to be exactly

m 0 ! 4p " 10#7 T $ m/A ! 1.26 " 10#6 T $ m/A. (29-2)

The direction of , shown as being into the page in Fig. 29-1, is that of the cross
product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 shows
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.
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Fig. 29-2 The magnetic field lines pro-
duced by a current in a long straight wire
form concentric circles around the wire.
Here the current is into the page, as indi-
cated by the ".
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Fig. 29-3 Iron filings
that have been sprinkled
onto cardboard collect in
concentric circles when
current is sent through the
central wire.The align-
ment, which is along
magnetic field lines, is
caused by the magnetic
field produced by the cur-
rent. (Courtesy Education
Development Center)
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ment, which is along
magnetic field lines, is
caused by the magnetic
field produced by the cur-
rent. (Courtesy Education
Development Center)
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29-3 Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-9
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-9 due to the current in wire a.That
current produces a magnetic field and it is this magnetic field that actually
causes the force we seek. To find the force, then, we need the magnitude and 
direction of the field at the site of wire b. The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)

The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-9 shows.

Now that we have the field, we can find the force it produces on wire b.
Equation 28-26 tells us that the force on a length L of wire b due to the exter-
nal magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-9, vectors and are perpen-
dicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-9, we see that is di-
rectly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:
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To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the force
on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

Fig. 29-9 Two parallel wires carrying
currents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B

:
a

F
:

ba

B
:

a

Fig. 29-10 (a) A rail gun, as a current i
is set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.
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The field due to a
at the position of b
creates a force on b.

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 % 10&7 newton per meter of wire length.

Rail Gun
One application of the physics of Eq. 29-13 is a rail gun. In this device, a magnetic
force accelerates a projectile to a high speed in a short time. The basics of a rail
gun are shown in Fig. 29-10a. A large current is sent out along one of two parallel
conducting rails, across a conducting “fuse” (such as a narrow piece of copper)
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29-3 Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-9
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-9 due to the current in wire a.That
current produces a magnetic field and it is this magnetic field that actually
causes the force we seek. To find the force, then, we need the magnitude and 
direction of the field at the site of wire b. The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)

The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-9 shows.

Now that we have the field, we can find the force it produces on wire b.
Equation 28-26 tells us that the force on a length L of wire b due to the exter-
nal magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-9, vectors and are perpen-
dicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-9, we see that is di-
rectly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:
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To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the force
on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

Fig. 29-9 Two parallel wires carrying
currents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B
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Fig. 29-10 (a) A rail gun, as a current i
is set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.
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The field due to a
at the position of b
creates a force on b.

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 % 10&7 newton per meter of wire length.

Rail Gun
One application of the physics of Eq. 29-13 is a rail gun. In this device, a magnetic
force accelerates a projectile to a high speed in a short time. The basics of a rail
gun are shown in Fig. 29-10a. A large current is sent out along one of two parallel
conducting rails, across a conducting “fuse” (such as a narrow piece of copper)
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29-3 Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-9
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-9 due to the current in wire a.That
current produces a magnetic field and it is this magnetic field that actually
causes the force we seek. To find the force, then, we need the magnitude and 
direction of the field at the site of wire b. The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)

The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-9 shows.

Now that we have the field, we can find the force it produces on wire b.
Equation 28-26 tells us that the force on a length L of wire b due to the exter-
nal magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-9, vectors and are perpen-
dicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-9, we see that is di-
rectly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:
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To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the force
on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

Fig. 29-9 Two parallel wires carrying
currents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B
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Fig. 29-10 (a) A rail gun, as a current i
is set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.
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The field due to a
at the position of b
creates a force on b.

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 % 10&7 newton per meter of wire length.

Rail Gun
One application of the physics of Eq. 29-13 is a rail gun. In this device, a magnetic
force accelerates a projectile to a high speed in a short time. The basics of a rail
gun are shown in Fig. 29-10a. A large current is sent out along one of two parallel
conducting rails, across a conducting “fuse” (such as a narrow piece of copper)
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Sample Problem

We want to combine and to find their vector sum,
which is the net field at P. To find the directions of and

, we apply the right-hand rule of Fig. 29-4 to each current
in Fig. 29-8a. For wire 1, with current out of the page, we
mentally grasp the wire with the right hand, with the thumb
pointing out of the page. Then the curled fingers indicate
that the field lines run counterclockwise. In particular, in the
region of point P, they are directed upward to the left.
Recall that the magnetic field at a point near a long, straight
current-carrying wire must be directed perpendicular to a
radial line between the point and the current. Thus, must
be directed upward to the left as drawn in Fig. 29-8b. (Note
carefully the perpendicular symbol between vector and
the line connecting point P and wire 1.)

Repeating this analysis for the current in wire 2, we find
that is directed upward to the right as drawn in Fig. 29-8b.
(Note the perpendicular symbol between vector and the
line connecting point P and wire 2.)

Adding the vectors: We can now vectorially add and 
to find the net magnetic field at point P, either by using a
vector-capable calculator or by resolving the vectors into
components and then combining the components of .
However, in Fig. 29-8b, there is a third method: Because 
and are perpendicular to each other, they form the legs of
a right triangle, with as the hypotenuse. The Pythagorean
theorem then gives us

(Answer)

The angle f between the directions of and in Fig. 29-8b
follows from

which, with B1 and B2 as given above, yields

The angle between the direction of and the x axis shown
in Fig. 29-8b is then

f ! 45° " 25° ! 45° " 70°. (Answer)
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Additional examples, video, and practice available at WileyPLUS

Magnetic field off to the side of two long straight currents

Figure 29-8a shows two long parallel wires carrying cur-
rents i1 and i2 in opposite directions. What are the magni-
tude and direction of the net magnetic field at point P?
Assume the following values: i1 " 15 A, i2 " 32 A, and 
d " 5.3 cm.

(1) The net magnetic field at point P is the vector sum
of the magnetic fields due to the currents in the two wires.
(2) We can find the magnetic field due to any current by
applying the Biot – Savart law to the current. For points
near the current in a long straight wire, that law leads to
Eq. 29-4.

Finding the vectors: In Fig. 29-8a, point P is distance R
from both currents i1 and i2. Thus, Eq. 29-4 tells us that at
point P those currents produce magnetic fields and 
with magnitudes

In the right triangle of Fig. 29-8a, note that the base angles
(between sides R and d) are both 45°.This allows us to write
cos 45° " R/d and replace R with d cos 45°. Then the field
magnitudes B1 and B2 become

B1 "
' 0i1

2(d cos 45%
  and  B2 "

' 0i2
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' 0i1

2(R
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.
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B
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KEY I DEAS

Fig. 29-8 (a) Two wires carry currents i1 and i2 in opposite direc-
tions (out of and into the page). Note the right angle at P. (b) The
separate fields and are combined vectorially to yield the net
field .B

:
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The two currents create
magnetic fields that must
be added as vectors to get
the net field.
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29-3 Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-9
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-9 due to the current in wire a.That
current produces a magnetic field and it is this magnetic field that actually
causes the force we seek. To find the force, then, we need the magnitude and 
direction of the field at the site of wire b. The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)

The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-9 shows.

Now that we have the field, we can find the force it produces on wire b.
Equation 28-26 tells us that the force on a length L of wire b due to the exter-
nal magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-9, vectors and are perpen-
dicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-9, we see that is di-
rectly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:
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To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the force
on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

Fig. 29-9 Two parallel wires carrying
currents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B

:
a

F
:

ba

B
:

a

Fig. 29-10 (a) A rail gun, as a current i
is set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.
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The field due to a
at the position of b
creates a force on b.

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 % 10&7 newton per meter of wire length.

Rail Gun
One application of the physics of Eq. 29-13 is a rail gun. In this device, a magnetic
force accelerates a projectile to a high speed in a short time. The basics of a rail
gun are shown in Fig. 29-10a. A large current is sent out along one of two parallel
conducting rails, across a conducting “fuse” (such as a narrow piece of copper)
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29-3 Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-9
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-9 due to the current in wire a.That
current produces a magnetic field and it is this magnetic field that actually
causes the force we seek. To find the force, then, we need the magnitude and 
direction of the field at the site of wire b. The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)

The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-9 shows.

Now that we have the field, we can find the force it produces on wire b.
Equation 28-26 tells us that the force on a length L of wire b due to the exter-
nal magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-9, vectors and are perpen-
dicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-9, we see that is di-
rectly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:
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To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the force
on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

Fig. 29-9 Two parallel wires carrying
currents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B
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Fig. 29-10 (a) A rail gun, as a current i
is set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.
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The field due to a
at the position of b
creates a force on b.

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 % 10&7 newton per meter of wire length.

Rail Gun
One application of the physics of Eq. 29-13 is a rail gun. In this device, a magnetic
force accelerates a projectile to a high speed in a short time. The basics of a rail
gun are shown in Fig. 29-10a. A large current is sent out along one of two parallel
conducting rails, across a conducting “fuse” (such as a narrow piece of copper)
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At 2nd wire, B1 from 1st wire points into 
the page, I2 upward, F2 to the left. 

At 1st wire, B2 from 2nd wire points out 
the page, I1 upward, F1to the right.

At 2nd wire, B1 from 1st wire points into 
the page, I2 downward, F2 to the right. 

At 1st wire, B2 from 2nd wire points into 
the page, I1 upward, F1to the left.

At 2nd wire, B1 from 1st wire points into 
the page, I2 upward, F2 to the left. 

At 1st wire, B2 from 2nd wire points out 
the page, I1 upward, F1to the right.

At 2nd wire, B1 from 1st wire points into 
the page, I2 downward, F2 to the right. 

At 1st wire, B2 from 2nd wire points into 
the page, I1 upward, F1to the left.
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Ampere’s Law
� Ampere’s law is used to find the magnetic field due to a current with less effort than 

using  Biot – Savart law, 

� Ampere’s Law states that: along any arbitrary path encircling a total current Ienc, the 
integral of the scalar product of the magnetic field B with the element of length ds of the 
path, is equal to the permeability μo times the total current ienc enclosed by the path.

� Applying Ampere’s law:
� Indicate which current in the problem is under question.
� Draw a closed loop called (Amperian loop) enclosing the current under question.
� Apply the integral above (Amper’s law).
� The integral of the scalar product of the magnetic field B with the element of length 

ds of the path, is equal to the permeability μo times the total current ienc enclosed by 
the path.

between the rails, and then back to the current source along the second rail. The
projectile to be fired lies on the far side of the fuse and fits loosely between the
rails. Immediately after the current begins, the fuse element melts and vaporizes,
creating a conducting gas between the rails where the fuse had been.

The curled–straight right-hand rule of Fig. 29-4 reveals that the currents in
the rails of Fig. 29-10a produce magnetic fields that are directed downward
between the rails. The net magnetic field exerts a force on the gas due to the
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule
for cross products, we find that points outward along the rails. As the gas is
forced outward along the rails, it pushes the projectile, accelerating it by as much
as 5 ! 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some-
day rail guns may be used to launch materials into space from mining operations
on the Moon or an asteroid.

F
:

F
:

B
:

CHECKPOINT 1

The figure here shows three long, straight, parallel, equally spaced wires with identical
currents either into or out of the page. Rank the wires according to the magnitude of
the force on each due to the currents in the other two wires, greatest first.

a b c

29-4 Ampere’s Law
We can find the net electric field due to any distribution of charges by first writing
the differential electric field due to a charge element and then summing the
contributions of from all the elements. However, if the distribution is compli-
cated, we may have to use a computer. Recall, however, that if the distribution
has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to find the
net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distrib-
ution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.

Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first
apply Ampere’s law to the general situation of Fig. 29-11. The figure shows cross
sections of three long straight wires that carry currents i1, i2, and i3 either directly
into or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of integra-
tion for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vector
elements that are everywhere directed along the tangent to the loop in theds:

B
:

! ds:  

B
:

! ds: 

! B
:

! ds: " #0ienc

dB
:

dB
:

dE
:

dE
:
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Fig. 29-11 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3 

i1 

i2 

Direction of 
integration 

ds 
θ 

Amperian 
loop 

B 

Only the currents
encircled by the
loop are used in
Ampere's law.
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� How to determining the +ve & -ve current when applying Ampere’s law:
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Fig. 29-13 Using Ampere’s law to find
the magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.

i  

(   = 0) θ 

r 
Amperian 
loop Wire 

surface 

B 

ds 

All of the current is
encircled and thus all
is used in Ampere's law.

direction of integration. Assume that at the location of the element shown in
Fig. 29-11, the net magnetic field due to the three currents is . Because the wires
are perpendicular to the page, we know that the magnetic field at due to each
current is in the plane of Fig. 29-11; thus, their net magnetic field at must also
be in that plane. However, we do not know the orientation of within the plane.
In Fig. 29-11, is arbitrarily drawn at an angle u to the direction of .

The scalar product on the left side of Eq. 29-14 is equal to B cos u ds.
Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

When we can actually perform this integration, we do not need to know the
direction of before integrating. Instead, we arbitrarily assume to be generally
in the direction of integration (as in Fig. 29-11). Then we use the following
curled–straight right-hand rule to assign a plus sign or a minus sign to each of the
currents that make up the net encircled current ienc:

B
:

B
:

B
:

! ds:

! B
:

! ds: ! ! B cos " ds ! #0ienc.

B
:

! ds:
ds:B

:
B
:

ds:B
:

ds:
B
:

ds:

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration. A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

In Fig. 29-12 we apply the curled–straight right-hand rule for Ampere’s law
to the situation of Fig. 29-11. With the indicated counterclockwise direction of
integration, the net current encircled by the loop is

ienc ! i1 $ i2.

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-11 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 $ i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-13 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire;

B
:

! B cos " ds ! #0(i1 $ i2).

B
:

B
:

B
:

Fig. 29-12 A right-hand rule for
Ampere’s law, to determine the signs for
currents encircled by an Amperian loop.
The situation is that of Fig. 29-11.

+i1 

–i2 
Direction of 
integration 

This is how to assign a
sign to a current used in
Ampere's law.
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.

B ! " $0i
2%R2  # r

B(2%r) ! $0i 
%r 2

%R2

ienc ! i 
%r2

%R2 .

$ B
:

! ds: ! B $ ds ! B(2%r).

B
:

B
:

B
:

B !
$0i
2%r

$ B
:

! ds: ! $ B cos & ds ! B $ ds ! B(2%r).

B
:

ds:

ds:B
:

ds:
B
:

ds:
B
:

B
:

Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.

R 

Amperian 
loop 

r 

Wire 
surface

i  

ds 

B 

Only the current encircled
by the loop is used in
Ampere's law.

CHECKPOINT 2

The figure here shows three equal cur-
rents i (two parallel and one antiparal-
lel) and four Amperian loops. Rank the
loops according to the magnitude of

along each, greatest first.! B
:
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.
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Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.
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5.3 The Divergence and Curl of B 233

The x component, in particular, is

(J · ∇′)

(
x − x ′

r3
)

= ∇′ ·
[
(x − x ′)

r3 J
]

−
(

x − x ′

r3
)

(∇′ · J)

(using product rule 5). Now, for steady currents the divergence of J is zero
(Eq. 5.33), so

[
−(J · ∇)

r
r2

]

x
= ∇′ ·

[
(x − x ′)

r3 J
]

,

and therefore this contribution to the integral (Eq. 5.51) can be written
∫

V
∇′ ·

[
(x − x ′)

r3 J
]

dτ ′ =
∮

S

(x − x ′)

r3 J · da′. (5.55)

(The reason for switching from ∇ to ∇′ was to permit this integration by parts.)
But what region are we integrating over? Well, it’s the volume that appears in
the Biot-Savart law (Eq. 5.47)—large enough, that is, to include all the current.
You can make it bigger than that, if you like; J = 0 out there anyway, so it will
add nothing to the integral. The essential point is that on the boundary the cur-
rent is zero (all current is safely inside) and hence the surface integral (Eq. 5.55)
vanishes.14

5.3.3 Ampère’s Law

The equation for the curl of B,

∇ × B = µ0J, (5.56)

is called Ampère’s law (in differential form). It can be converted to integral form
by the usual device of applying one of the fundamental theorems—in this case
Stokes’ theorem:

∫
(∇ × B) · da =

∮
B · dl = µ0

∫
J · da.

Now,
∫

J · da is the total current passing through the surface (Fig. 5.31), which
we call Ienc (the current enclosed by the Amperian loop). Thus

∮
B · dl = µ0 Ienc. (5.57)

14If J itself extends to infinity (as in the case of an infinite straight wire), the surface integral is still
typically zero, though the analysis calls for greater care.
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that is, the field has cylindrical symmetry about the wire. We can take advan-
tage of that symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and
29-15) if we encircle the wire with a concentric circular Amperian loop of radius
r, as in Fig. 29-13. The magnetic field then has the same magnitude B at every
point on the loop. We shall integrate counterclockwise, so that has the direc-
tion shown in Fig. 29-13.

We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0°, so
cos u ! cos 0° ! 1.The integral in Eq. 29-15 then becomes

Note that ! ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-13.The right
side of Ampere’s law becomes "m0 i, and we then have

B(2pr) ! m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-13.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-14 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-14, where now r # R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

To find the right side of Ampere’s law, we note that because the current is
uniformly distributed, the current ienc encircled by the loop is proportional to the
area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.
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Fig. 29-14 Using Ampere’s law to find
the magnetic field that a current i produces
inside a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.
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The x component, in particular, is

(J · ∇′)

(
x − x ′

r3
)

= ∇′ ·
[
(x − x ′)

r3 J
]

−
(

x − x ′

r3
)

(∇′ · J)

(using product rule 5). Now, for steady currents the divergence of J is zero
(Eq. 5.33), so

[
−(J · ∇)

r
r2

]

x
= ∇′ ·

[
(x − x ′)

r3 J
]

,

and therefore this contribution to the integral (Eq. 5.51) can be written
∫

V
∇′ ·

[
(x − x ′)

r3 J
]

dτ ′ =
∮

S

(x − x ′)

r3 J · da′. (5.55)

(The reason for switching from ∇ to ∇′ was to permit this integration by parts.)
But what region are we integrating over? Well, it’s the volume that appears in
the Biot-Savart law (Eq. 5.47)—large enough, that is, to include all the current.
You can make it bigger than that, if you like; J = 0 out there anyway, so it will
add nothing to the integral. The essential point is that on the boundary the cur-
rent is zero (all current is safely inside) and hence the surface integral (Eq. 5.55)
vanishes.14

5.3.3 Ampère’s Law

The equation for the curl of B,

∇ × B = µ0J, (5.56)

is called Ampère’s law (in differential form). It can be converted to integral form
by the usual device of applying one of the fundamental theorems—in this case
Stokes’ theorem:

∫
(∇ × B) · da =

∮
B · dl = µ0

∫
J · da.

Now,
∫

J · da is the total current passing through the surface (Fig. 5.31), which
we call Ienc (the current enclosed by the Amperian loop). Thus

∮
B · dl = µ0 Ienc. (5.57)

14If J itself extends to infinity (as in the case of an infinite straight wire), the surface integral is still
typically zero, though the analysis calls for greater care.
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contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

The magnitude of the field produced at point P at distance r by a current-
length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m 0 is a constant, called the permeability constant,
whose value is defined to be exactly

m 0 ! 4p " 10#7 T $ m/A ! 1.26 " 10#6 T $ m/A. (29-2)

The direction of , shown as being into the page in Fig. 29-1, is that of the cross
product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 shows
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.
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:
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Fig. 29-2 The magnetic field lines pro-
duced by a current in a long straight wire
form concentric circles around the wire.
Here the current is into the page, as indi-
cated by the ".

Wire with current 
into the page 

B 

B 

The magnetic field vector
at any point is tangent to
a circle.

Fig. 29-3 Iron filings
that have been sprinkled
onto cardboard collect in
concentric circles when
current is sent through the
central wire.The align-
ment, which is along
magnetic field lines, is
caused by the magnetic
field produced by the cur-
rent. (Courtesy Education
Development Center)
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Magnetic Field of a Solenoid

Solenoid: long coil of wire with many turns 
� We have infinitely long solenoid of n turns (loops) per unit length (n = N/h) 

(N: total number of turns around a cylinder of radius R) 
� Using the rectangular Amperian loop abcda 

� Because the rectangular Amperian loop has N turns     à ienc = N i = i nh    (N = nh)

	

� The B field is strong and uniform at interior points P1 but weak or zero at external points P2

� The magnetic field produced by a current-carrying coil, is called a magnetic dipole
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.

P2

P1
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.
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the sum of four integrals, one for each loop segment:

(29-22)

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of
the uniform field inside the solenoid and h is the (arbitrary) length of the
segment from a to b. The second and fourth integrals are zero because for every
element ds of these segments, either is perpendicular to ds or is zero, and thus
the product is zero. The third integral, which is taken along a segment that
lies outside the solenoid, is zero because B ! 0 at all external points. Thus,

for the entire rectangular loop has the value Bh.
The net current ienc encircled by the rectangular Amperian loop in Fig. 29-19

is not the same as the current i in the solenoid windings because the windings
pass more than once through this loop. Let n be the number of turns per unit
length of the solenoid; then the loop encloses nh turns and

ienc ! i(nh).

Ampere’s law then gives us

Bh ! m0inh

or B ! m0in (ideal solenoid). (29-23)

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it
holds quite well for actual solenoids if we apply it only at interior points and
well away from the solenoid ends. Equation 29-23 is consistent with the ex-
perimental fact that the magnetic field magnitude B within a solenoid does
not depend on the diameter or the length of the solenoid and that B is uni-
form over the solenoidal cross section. A solenoid thus provides a practical
way to set up a known uniform magnetic field for experimentation, just as a
parallel-plate capacitor provides a practical way to set up a known uniform
electric field.

Magnetic Field of a Toroid
Figure 29-20a shows a toroid, which we may describe as a (hollow) solenoid that
has been curved until its two ends meet, forming a sort of hollow bracelet. What
magnetic field is set up inside the toroid (inside the hollow of the bracelet)? We
can find out from Ampere’s law and the symmetry of the bracelet.

From the symmetry, we see that the lines of form concentric circles inside
the toroid, directed as shown in Fig. 29-20b. Let us choose a concentric circle of

B
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:

! ds:

B
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! ds:
B
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B
:

" "d

c
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:
! ds: " "a

d
 B

:
! ds:. # B

:
! ds: ! "b

a
 B

:
! ds: " "c

b
 B

:
! ds:

Amperian loop

r

i

(b)
B

Fig. 29-20 (a) A toroid carrying a current i. (b) A
horizontal cross section of the toroid.The interior
magnetic field (inside the bracelet-shaped tube) can be
found by applying Ampere’s law with the Amperian
loop shown.

i

(a)
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zero? zero? zero?Bh?

� Using the rectangular Amperian loop abcda

� Ienc encircled by the rectangular Amperian loop ≠ I through solenoid turns?
Because turns pass more than once through this loopà the loop encloses nL turns
à Ienc = I nL

!" # $% =

� Notice: B inside is uniform & doesn't depend on distance from axis
à solenoid is to magnetostatics what the parallel-plate capacitor is to electrostatics: 
a simple device for producing strong uniform fields 
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.

P2

P1
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zero? zero? zero?BL?

Chapter 8:  Magnetism 

8-19 

    B =
�oI
2�r                                                      (8.48) 

 
Example 8.6 

The magnetic field of a long straight wire.  A long straight wire is carrying a current 
of 15.0 A. Find the magnetic field 30.0 cm from the wire. 

The magnetic field around the wire is found from equation 8.48 to be 
 

     
B =

�oI
2�r =

(4� � 10−7T m/A)(15.0 A)
2�(0.300 m)   

B = 1.00 � 10−5 T  
 

To go to this Interactive Example click on this sentence. 

 
 

8.11  The Magnetic Field Inside a Solenoid  
A solenoid is a long coil of wire with many turns and is shown schematically in fig-
ure 8.12. Note that the magnetic field of a solenoid looks like the magnetic field of a 
bar magnet. The magnetic field is uniform and intense within the coils but is so 
small outside of the coil, that it is taken to be zero there. The magnetic field inside  

Figure 8.12  The magnetic field of a solenoid 
 
the solenoid lies along the axis of the coil, as seen in figure 8.12(a). The value of B 
inside the solenoid is found from Ampere’s law, by adding up the values of B � dl 
along the rectangular path ABCD in figure 8.12(b). That is  
 

´B  dl = �oItotal   
�AB B  dl + �BC B  dl + �CD B  dl + �DA B  dl = �oItotal                (8.49) 

 
But since B = 0 outside the solenoid 

Solution
 

 

A B

CD

lAB

lBC

lCD

lDA

(b)(a)
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Fig. 29-19 Application of Ampere’s law to a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rectangle abcda.

a b

d c
h

i

B

vidual turns (windings) that make up the solenoid. For points very close to a turn,
the wire behaves magnetically almost like a long straight wire, and the lines of 
there are almost concentric circles. Figure 29-17 suggests that the field tends to
cancel between adjacent turns. It also suggests that, at points inside the solenoid
and reasonably far from the wire, is approximately parallel to the (central)
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long
and consists of tightly packed (close-packed) turns of square wire, the field inside
the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-18 shows the lines of for a real solenoid.The spacing of these lines
in the central region shows that the field inside the coil is fairly strong and uniform
over the cross section of the coil.The external field, however, is relatively weak.

Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-19, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as! B

:
! ds:

B
:

" B
:

! ds: ! " 0 ienc ,

B
:

B
:

B
:

Fig. 29-18 Magnetic field lines for a real solenoid of finite length.The field is strong
and uniform at interior points such as P1 but relatively weak at external points such as P2.
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Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The
problem does not have enough symmetry to make Ampere’s law useful; so we
must turn to the law of Biot and Savart. For simplicity, we first consider only a
coil with a single circular loop and only points on its perpendicular central axis,
which we take to be a z axis. We shall show that the magnitude of the magnetic
field at such points is

(29-26)

in which R is the radius of the circular loop and z is the distance of the point in
question from the center of the loop. Furthermore, the direction of the mag-
netic field is the same as the direction of the magnetic dipole moment of
the loop.

For axial points far from the loop, we have z R in Eq. 29-26. With that
approximation, the equation reduces to

Recalling that pR2 is the area A of the loop and extending our result to include
a coil of N turns, we can write this equation as

Further, because and have the same direction, we can write the equation in
vector form, substituting from the identity NiA:

(current-carrying coil). (29-27)

Thus, we have two ways in which we can regard a current-carrying coil as a
magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis-
tant points along its axis, by Eq. 29-27. Figure 29-21 shows the magnetic field of
a current loop; one side of the loop acts as a north pole (in the direction of )
and the other side as a south pole, as suggested by the lightly drawn magnet in
the figure. If we were to place a current-carrying coil in an external magnetic
field, it would tend to rotate just like a bar magnet would.
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B
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(z) "
!0

2#
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z3
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!:B
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B(z) "
! 0
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NiA
z3 .
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! 0iR2
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$

!:B
:
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! 0 iR2

2(R2 % z2)3/2 ,

CHECKPOINT 3

The figure here shows four arrangements of circular loops of radius r or 2r, centered on
vertical axes (perpendicular to the loops) and carrying identical currents in the direc-
tions indicated. Rank the arrangements according to the magnitude of the net magnetic
field at the dot, midway between the loops on the central axis, greatest first.

(a) (b) (c) (d)

N

S

i

i

B

µ

Fig. 29-21 A current loop produces a
magnetic field like that of a bar magnet and
thus has associated north and south poles.
The magnetic dipole moment of the loop,
its direction given by a curled–straight
right-hand rule, points from the south pole
to the north pole, in the direction of the
field within the loop.B

:

!:
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the sum of four integrals, one for each loop segment:

(29-22)

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of
the uniform field inside the solenoid and h is the (arbitrary) length of the
segment from a to b. The second and fourth integrals are zero because for every
element ds of these segments, either is perpendicular to ds or is zero, and thus
the product is zero. The third integral, which is taken along a segment that
lies outside the solenoid, is zero because B ! 0 at all external points. Thus,

for the entire rectangular loop has the value Bh.
The net current ienc encircled by the rectangular Amperian loop in Fig. 29-19

is not the same as the current i in the solenoid windings because the windings
pass more than once through this loop. Let n be the number of turns per unit
length of the solenoid; then the loop encloses nh turns and

ienc ! i(nh).

Ampere’s law then gives us

Bh ! m0inh

or B ! m0in (ideal solenoid). (29-23)

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it
holds quite well for actual solenoids if we apply it only at interior points and
well away from the solenoid ends. Equation 29-23 is consistent with the ex-
perimental fact that the magnetic field magnitude B within a solenoid does
not depend on the diameter or the length of the solenoid and that B is uni-
form over the solenoidal cross section. A solenoid thus provides a practical
way to set up a known uniform magnetic field for experimentation, just as a
parallel-plate capacitor provides a practical way to set up a known uniform
electric field.

Magnetic Field of a Toroid
Figure 29-20a shows a toroid, which we may describe as a (hollow) solenoid that
has been curved until its two ends meet, forming a sort of hollow bracelet. What
magnetic field is set up inside the toroid (inside the hollow of the bracelet)? We
can find out from Ampere’s law and the symmetry of the bracelet.

From the symmetry, we see that the lines of form concentric circles inside
the toroid, directed as shown in Fig. 29-20b. Let us choose a concentric circle of

B
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B
:
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:

! ds:

B
:

! ds:
B
:

B
:
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c
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d
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:
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b
 B

:
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Amperian loop

r

i

(b)
B

Fig. 29-20 (a) A toroid carrying a current i. (b) A
horizontal cross section of the toroid.The interior
magnetic field (inside the bracelet-shaped tube) can be
found by applying Ampere’s law with the Amperian
loop shown.

i

(a)
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the sum of four integrals, one for each loop segment:

(29-22)

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of
the uniform field inside the solenoid and h is the (arbitrary) length of the
segment from a to b. The second and fourth integrals are zero because for every
element ds of these segments, either is perpendicular to ds or is zero, and thus
the product is zero. The third integral, which is taken along a segment that
lies outside the solenoid, is zero because B ! 0 at all external points. Thus,

for the entire rectangular loop has the value Bh.
The net current ienc encircled by the rectangular Amperian loop in Fig. 29-19

is not the same as the current i in the solenoid windings because the windings
pass more than once through this loop. Let n be the number of turns per unit
length of the solenoid; then the loop encloses nh turns and

ienc ! i(nh).

Ampere’s law then gives us

Bh ! m0inh

or B ! m0in (ideal solenoid). (29-23)

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it
holds quite well for actual solenoids if we apply it only at interior points and
well away from the solenoid ends. Equation 29-23 is consistent with the ex-
perimental fact that the magnetic field magnitude B within a solenoid does
not depend on the diameter or the length of the solenoid and that B is uni-
form over the solenoidal cross section. A solenoid thus provides a practical
way to set up a known uniform magnetic field for experimentation, just as a
parallel-plate capacitor provides a practical way to set up a known uniform
electric field.

Magnetic Field of a Toroid
Figure 29-20a shows a toroid, which we may describe as a (hollow) solenoid that
has been curved until its two ends meet, forming a sort of hollow bracelet. What
magnetic field is set up inside the toroid (inside the hollow of the bracelet)? We
can find out from Ampere’s law and the symmetry of the bracelet.

From the symmetry, we see that the lines of form concentric circles inside
the toroid, directed as shown in Fig. 29-20b. Let us choose a concentric circle of
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Fig. 29-20 (a) A toroid carrying a current i. (b) A
horizontal cross section of the toroid.The interior
magnetic field (inside the bracelet-shaped tube) can be
found by applying Ampere’s law with the Amperian
loop shown.

i

(a)

halliday_c29_764-790v2.qxd  3-12-2009  16:13  Page 777

M =
P
ℎ =

500
3×10!# = 16,666.7

! = 3%1M = 4 3.14 ×10!" 2 16,666.7 = 0.042	J


