General Physics 2 SCPH 211

Chapter 25 CAPACITANCE

A All of these devices are capacitors, which store electric charge and energy. A capacitor is one type of circuit element that we can combine with others to make electric circuits.

Outline:

- Introduction
- Capacitor \& Capacitance
- Charging a Capacitor
- Calculating the Capacitance
- Capacitors in Parallel and in Series
- Energy Stored in an Electric Field

Introduction

- Capacitor: a device in which electrical energy can be stored. e.g., the batteries in a camera store energy in the photoflash unit by charging a capacitor
- The physics of capacitors can be generalized to other devices and to any situation involving electric fields.
- e.g., Earth's atmospheric electric field is modeled as being produced by a huge spherical capacitor that partially discharges via lightning
- Our discussion of capacitors
- To determine how much charge can be stored
- This "how much" is called capacitance

Introduction

- Capacitor: consists of two isolated conductors, called plates, of any shape
- A parallel-plate capacitor, consisting of two parallel conducting plates of area A separated by a distance d
- The symbol of a capacitor in electric circuit

- When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs $+q$ \& $-q$
- We refer to the charge of a capacitor as q
- The net charge on the capacitor is zero
- Because the plates are conductors
\rightarrow they are equipotential surfaces
\rightarrow all points on a plate are at the same V
- There is a potential difference between the two plates represented V rather than ΔV

$q \& V$ for a capacitor are proportional to each other

$$
q=C V
$$

Where C is called the capacitance of the capacitor

- $\quad C$ depends on the geometry of the plates and not on q or V
- The greater the capacitance, the more charge is required to produce a certain potential difference between them
- The SI unit of C is $\mathbf{f a r a d}(\mathbf{F}): \mathbf{1}$ farad $=\mathbf{1}$ coulomb/volt $\left(\mathrm{pF}=10^{-12} \mathrm{~F}, \mu \mathrm{~F}=10^{-6} \mathrm{~F}\right)$
- Charging a Capacitor: by connecting the plates with a battery, a potential difference between capacitor terminals is maintained
- The terminal of higher potential is + (positive terminal)

The terminal of lower potential is - (negative terminal)

- When switch S is closed
\rightarrow charges (electrons) flow through the wire
- E from battery drives electrons from plate h to + ve terminal of the battery \rightarrow plate h loses electrons \rightarrow becomes positively charged
- E drives electrons from -ve terminal of the battery to plate l \rightarrow plate l gains electrons \rightarrow becomes negatively charged
- (as much as plate h, losing electrons, plate l gaining $)$
- When plates are uncharged $\rightarrow V$ between them $=$ zero
- During charging, potential difference V increases until becomes equals to potential difference V of the battery
- \rightarrow plate $h \&+$ ve terminal of the battery have same potential
\rightarrow no electric field in the wire between them
- Similarly, plate $l \&-v e ~ t e r m i n a l ~ r e a c h ~ t h e ~ s a m e ~ p o t e n t i a l ~$
\rightarrow no electric field in the wire between them
- When $E=$ zero between battery and plates

\rightarrow no further drive of electrons
\rightarrow capacitor is fully charged

CHECKPOINT 1

Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when the charge q on it is doubled and (b) when the potential difference V across it is tripled?
(a) same;
(b) same

Capacitance

Parallel plate

Cylindrical

Spherical

Isolated sphere

Calculating the Capacitance

1. Assume a charge $=q$ on the plates
2. Calculate \boldsymbol{E} between the plates using Gauss' law $\rightarrow \oint \vec{E} \cdot d \vec{A}=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}}$
3. Calculate V between the plates $\rightarrow V=-\int_{i}^{f} \vec{E} \cdot d \vec{s}$
4. Calculate $C \rightarrow q=C V$.

- Calculating the Potential Difference:

We choose a path follows electric field line from -ve to +ve plate

- For this path, the vectors $\boldsymbol{E} \& d s$ have opposite directions $\rightarrow \quad V=\int_{-}^{+} E d s$

A Parallel-Plate Capacitor

A : plate area, d distance between plates

$$
\begin{aligned}
q & =\varepsilon_{0} E A \\
V & =\int_{-}^{+} E d s \\
& =E \int_{-}^{+} \mathrm{ds}=E d \\
C=\frac{q}{V} & =\frac{\varepsilon_{o} E A}{E d}=\frac{\varepsilon_{o} A}{d}
\end{aligned}
$$

$$
C=\frac{\varepsilon_{0} A}{d} \quad \text { (parallel-plate capacitor). }
$$

Problems:

1. A parallel-plate capacitor with plate's area of $\mathbf{2 5} \mathrm{cm}^{2}$ and separation of $\mathbf{1 7 . 7 \mathrm { mm }}$ is charged by applying a voltage of 12 V across its ends. Calculate the total charge of the capacitor.

$$
\begin{aligned}
& C=\frac{A \varepsilon_{0}}{d}=\frac{25 \times 10^{-4} \times 8.85 \times 10^{-12}}{17.7 \times 10^{-3}}=1.25 \mathrm{pF} \\
& q=C V=1.25 \times 10^{-12} \times 12=15 \mathrm{pC}
\end{aligned}
$$

Problems:

2. A parallel plate capacitor has a capacitance of $8 \mu \mathrm{~F}$. Calculate the capacitance if the
i. Plate separation is doubled
$C=\frac{A \varepsilon_{0}}{d}=8 \mu \mathrm{~F}$
When $d^{\prime}=2 d \rightarrow C^{\prime}=\frac{A \varepsilon_{0}}{2 d}=\frac{8}{2}=4 \mu \mathrm{~F}$
ii. Plate area is doubled

When $A^{\prime}=2 A \rightarrow C^{\prime}=\frac{2 A \varepsilon_{0}}{d}=2(8)=16 \mu \mathrm{~F}$

CHECKPOINT 2

For capacitors charged by the same battery, does the charge stored by the capacitor increase, decrease, or remain the same in each of the following situations? (a) The plate separation of a parallel-plate capacitor is increased. (b) The area of the plate of a parallel-plate capacitor is increased.
(a) decreases;

$$
C=\frac{\varepsilon_{0} A}{d} \quad \text { (parallel-plate capacitor) }
$$

(b) increases;

Capacitors in Parallel and in Series

- To simplify circuit, we replace a combination of capacitors in a circuit, with an equivalent capacitor
- Equivalent capacitor: a single capacitor that has the same capacitance as the actual combination of capacitors

- Capacitors in Parallel

- "in parallel" means that the capacitors are directly wired together at one plate and directly wired together at the other plate
- Each capacitor has same V, which produces a charge on each capacitor

When a potential difference V is applied across several capacitors connected in parallel, that potential difference V is applied across each capacitor. The total charge q stored on the capacitors is the sum of the charges stored on all the capacitors.

Capacitors connected in parallel can be replaced with an equivalent capacitor that has the same total charge q and the same potential difference V as the actual capacitors.

$$
\begin{aligned}
& q_{1}=C_{1} V, \quad q_{2}=C_{2} V, \quad \text { and } \quad q_{3}=C_{3} V . \\
& q=q_{1}+q_{2}+q_{3}=\left(C_{1}+C_{2}+C_{3}\right) V \\
& C_{\mathrm{eq}}=\frac{q}{V}=C_{1}+C_{2}+C_{3} \\
& C_{\mathrm{eq}}=\sum_{i=1}^{n} C_{j} \quad(n \text { capacitors in parallel }) .
\end{aligned}
$$

-Terminal

$C_{\mathrm{eq}}>C_{1}, C_{2}, C_{3}, \ldots$.

Capacitors in Series

- "in series" means that the capacitors are wired serially, one after the other
- The potential differences that then exist across the capacitors in the series produce identical charges q on them

When a potential difference V is applied across several capacitors connected in series, the capacitors have identical charge q. The sum of the potential differences across all the capacitors is equal to the applied potential difference V.

Capacitors that are connected in series can be replaced with an equivalent capacitor that has the same charge q and the same total potential difference V as the actual series capacitors.
$V_{1}=\frac{q}{C_{1}}, \quad V_{2}=\frac{q}{C_{2}}, \quad$ and $\quad V_{3}=\frac{q}{C_{3}}$.
$V=V_{1}+V_{2}+V_{3}=q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)$.
$C_{\text {eq }}=\frac{q}{V}=\frac{1}{1 / C_{1}+1 / C_{2}+1 / C_{3}}$,

$$
C_{\mathrm{eq}}<C_{1}, C_{2}, C_{3}, \ldots .
$$

Capacitors Combinations

V is constant
$q=q_{1}+q_{2}+q_{3}=\left(C_{1}+C_{2}+C_{3}\right) V$.
$C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}$,
$C_{\mathrm{eq}}=\sum_{i=1}^{n} C_{j} \quad(n$ capacitors in parallel $)$.
q or I is constant

$$
\begin{aligned}
& V=V_{1}+V_{2}+V_{3}=q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right) . \\
& \frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} . \\
& \frac{1}{C_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{C_{j}} \quad(n \text { capacitors in series }) .
\end{aligned}
$$

$C_{\mathrm{eq}}>C_{1}, C_{2}, C_{3}, \ldots \ldots$
$C_{\mathrm{eq}}<C_{1}, C_{2}, C_{3}, \ldots$.

CHECKPOINT 3

A battery of potential V stores charge q on a combination of two identical capacitors. What are the potential difference across and the charge on either capacitor if the capacitors are (a) in parallel and (b) in series?
(a) $V, q / 2$;
(b) $V / 2 ; q$

Sample Problem

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of capacitances shown in Fig. 25-10a, across which potential difference V is applied. Assume

$$
\begin{aligned}
& C_{1}=12.0 \mu \mathrm{~F}, \quad C_{2}=5.30 \mu \mathrm{~F}, \quad \text { and } C_{3}=4.50 \mu \mathrm{~F} \\
& C_{12}=C_{1}+C_{2}=12.0 \mu \mathrm{~F}+5.30 \mu \mathrm{~F}=17.3 \mu \mathrm{~F}
\end{aligned}
$$

$$
\frac{1}{C_{123}}=\frac{1}{C_{12}}+\frac{1}{C_{3}}
$$

$$
=\frac{1}{17.3 \mu \mathrm{~F}}+\frac{1}{4.50 \mu \mathrm{~F}}=0.280 \mu \mathrm{~F}^{-1},
$$

from which

$$
C_{123}=\frac{1}{0.280 \mu \mathrm{~F}^{-1}}=3.57 \mu \mathrm{~F} .
$$

(a)

(b)

(c)
(b) The potential difference applied to the input terminals in Fig. 25-10a is $V=12.5 \mathrm{~V}$. What is the charge on C_{1} ?

$$
q_{123}=C_{123} V=(3.57 \mu \mathrm{~F})(12.5 \mathrm{~V})=44.6 \mu \mathrm{C} .
$$

The series capacitors 12 and 3 in Fig. 25-10b each have the same charge as their equivalent capacitor 123 (Fig. 25-10f). Thus, capacitor 12 has charge $q_{12}=q_{123}=44.6 \mu \mathrm{C}$.

$$
V_{12}=\frac{q_{12}}{C_{12}}=\frac{44.6 \mu \mathrm{C}}{17.3 \mu \mathrm{~F}}=2.58 \mathrm{~V} .
$$

The parallel capacitors 1 and 2 each have the same potential difference as their equivalent capacitor 12 (Fig. 25-10h). Thus, capacitor 1 has potential difference $V_{1}=V_{12}=2.58 \mathrm{~V}$,

(a)

(b)

(c)

$$
\begin{aligned}
q_{1} & =C_{1} V_{1}=(12.0 \mu \mathrm{~F})(2.58 \mathrm{~V}) \\
& =31.0 \mu \mathrm{C} .
\end{aligned}
$$

Problems:

6. In this figure, $C_{1}=6 \mu \mathrm{~F}$ and $C_{2}=C_{3}=C_{4}=2 \mu \mathrm{~F}$. Calculate the equivalent capacitance.
$C_{2}, C_{3} \& C_{4}$ are in parallel $\rightarrow C_{234}=2+2+2=6 \mu \mathrm{~F}$
$C_{1} \& C_{234}$ are in series $\rightarrow C_{\text {eq }}=\frac{C_{1} \times C_{234}}{C_{1}+C_{234}}=\frac{6 \times 6}{6+6}=3 \mu \mathrm{~F}$

7. Calculate the equivalent capacitance this figure,
$1 \mu \mathrm{~F}+3 \mu \mathrm{~F}=4 \mu \mathrm{~F}$
$6 \mu \mathrm{~F}+2 \mu \mathrm{~F}=8 \mu \mathrm{~F}$
$\frac{4 \times 4}{4+4}=2 \mu \mathrm{~F}$
$\frac{8 \times 8}{8+8}=4 \mu \mathrm{~F}$
$2 \mu \mathrm{~F}+4 \mu \mathrm{~F}=6 \mu \mathrm{~F}$

Problems:

8. In this figure, $C_{1}=6 \mu \mathrm{~F}, C_{2}=2 \mu \mathrm{~F}$ and $\mathrm{V}=12 \mathrm{~V}$. Calculate:
i. Their equivalent capacitance.

$$
C_{\mathrm{eq}}=C_{1}+C_{2}=6+2=8 \mu \mathrm{~F}
$$

ii. The charge on capacitor C_{2}.

$$
q_{2},=C_{2} \mathrm{~V}=2 \times 10^{-6} \times 12=24 \times 10^{-6} \mathrm{C}
$$

Energy Stored in an Electric Field

- To charge a capacitor, work must be done by an external agent (battery)
- We visualize the work required to charge a capacitor as being stored in the form of electric potential energy U in the electric field between the capacitor plates
- To calculate the energy stored in capacitor:
- Suppose that, at a given instant, a charge q^{\prime} has been transferred from one plate of a capacitor to the other
- The potential difference V^{\prime} between the plates at that instant will be q^{\prime} / C
- If an extra increment of charge $d q^{\prime}$ is then transferred, the increment of work required will be

$$
\begin{aligned}
d W & =V^{\prime} d q^{\prime}=\frac{q^{\prime}}{C} d q^{\prime} . \\
W & =\int d W=\frac{1}{C} \int_{0}^{q} q^{\prime} d q^{\prime}=\frac{q^{2}}{2 C} .
\end{aligned}
$$

- This work is stored as potential energy U given by:

$U=\frac{q^{2}}{2 C} \quad$ (potential energy).	Or	$U=\frac{1}{2} C V^{2} \quad$ (potential energy).	Or	$U=\frac{1}{2} \underline{q} V$	potential energy)

The potential energy of a charged capacitor may be viewed as being stored in the electric field between its plates.

Problems:

9. An isolated sphere is completely charged to 60 pC when a voltage of 12 V is applied. Calculate
i. The radius of the sphere
$q=C V \Rightarrow C=\frac{q}{V}=\frac{60 \times 10^{-12}}{12}=5 \times 10^{-12} \mathrm{~F}$
$C=4 \pi \varepsilon_{0} R \Rightarrow R=\frac{C}{4 \pi \varepsilon_{0}}=\frac{5 \times 10^{-12}}{4(3.14)\left(8.85 \times 10^{-12}\right)}=4.5 \mathrm{~cm}$
ii. The energy stored within the sphere
$U=\frac{1}{2} q V=\frac{1}{2} \times 12 \times 60 \times 10^{-12}=360 \times 10^{-12} \mathrm{~J}$

1 Figure 25-18 shows plots of charge versus potential difference for three parallel-plate capacitors that have the plate areas and separations given in the table. Which plot goes with which capacitor?

Fig. 25-18 Question 1.

Capacitor	Area	Separation	
1	A	d	
2	$2 A$	d	$a, 2 ; b, 1 ; c, 3$
3	A	$2 d$	

7 For each circuit in Fig. 25-21, are the capacitors connected in series, in parallel, or in neither mode?

11 You are to connect capacitances C_{1} and C_{2}, with $C_{1}>C_{2}$, to a battery, first individually, then in series, and then in parallel. Rank those arrangements according to the amount of charge stored, greatest first.
-2 The capacitor in Fig. 25-25 has a capacitance of $25 \mu \mathrm{~F}$ and is initially uncharged. The battery provides a potential difference of 120 V . After switch S is closed, how much charge will pass through it?

Fig. 25-25 Problem 2.
-3 SSM A parallel-plate capacitor has circular plates of 8.20 cm radius and 1.30 mm separation. (a) Calculate the capacitance. (b) Find the charge for a potential difference of 120 V .
-9 Each of the uncharged capacitors in Fig. 25-27 has a capacitance of $25.0 \mu \mathrm{~F}$. A potential difference of $V=4200 \mathrm{~V}$ is established when the switch is closed. How many coulombs of charge then pass through meter A?

Fig. 25-27 Problem 9.
-25 In Fig. 25-40, two parallel-plate capacitors (with air between the plates) are connected to a battery. Capacitor 1 has a plate area of $1.5 \mathrm{~cm}^{2}$ and an electric field (between its plates) of magnitude $2000 \mathrm{~V} / \mathrm{m}$. Capacitor 2 has a plate area of $0.70 \mathrm{~cm}^{2}$ and

Fig. 25-40
Problem 25. an electric field of magnitude $1500 \mathrm{~V} / \mathrm{m}$. What is the total charge on the two capacitors?
-29 What capacitance is required to store an energy of $10 \mathrm{~kW} \cdot \mathrm{~h}$ at a potential difference of 1000 V ?
-31 SSM A $2.0 \mu \mathrm{~F}$ capacitor and a $4.0 \mu \mathrm{~F}$ capacitor are connected in parallel across a 300 V potential difference. Calculate the total energy stored in the capacitors.

