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▲ All of these devices are capacitors, which store electric charge and energy. A capacitor is
one type of circuit element that we can combine with others to make electric circuits.
(Paul Silverman/Fundamental Photographs)

Chapter 26



Outline:
� Introduction

� Capacitor & Capacitance

� Charging a Capacitor

� Calculating the Capacitance

� Capacitors in Parallel and in Series 

� Energy Stored in an Electric Field 



Introduction 

� Capacitor: a device in which electrical energy can be stored. e.g., the batteries in a 
camera store energy in the photoflash unit by charging a capacitor

� The physics of capacitors can be generalized to other devices and to any situation 
involving electric fields. 
� e.g., Earth’s atmospheric electric field is modeled as being produced by a huge 

spherical capacitor that partially discharges via lightning

� Our discussion of capacitors
� To determine how much charge can be stored
� This “how much” is called capacitance 



Introduction
� Capacitor: consists of two isolated conductors, called plates, of any shape 

� A parallel-plate capacitor, consisting of two parallel conducting plates of area A 
separated by a distance d

� The symbol of a capacitor in electric circuit

� When a capacitor is charged, its plates have charges of equal magnitudes but opposite 
signs +q & -q
� We refer to the charge of a capacitor as q
� The net charge on the capacitor is zero

� Because the plates are conductors
à they are equipotential surfaces
à all points on a plate are at the same V
� There is a potential difference between the two plates represented V rather than ∆V
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shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Section 25-6, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the #V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q $ CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad $ 1 F $ 1 coulomb per volt $ 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates.The field is not uniform at the edges of
the plates, as indicated by the “fringing” of the field lines there.
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A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Section 25-6, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the #V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q $ CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad $ 1 F $ 1 coulomb per volt $ 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
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� q & V for a capacitor are proportional to each other

Where C is called the capacitance of the capacitor
� C depends on the geometry of the plates and not on q or V 
� The greater the capacitance, the more charge is required to produce a certain potential 

difference between them
� The SI unit of C is farad (F): 1 farad = 1coulomb/volt (pF =10–12 F, μF =10–6F)

� Charging a Capacitor: by connecting the plates with a battery, a potential difference 
between capacitor terminals is maintained
� The terminal of higher potential is + (positive terminal) 

The terminal of lower potential is – (negative terminal) 
� When switch S is closed 

à charges (electrons) flow through the wire
� E from battery drives electrons from plate h to +ve terminal of the battery

à plate h loses electrons à becomes positively charged
� E drives electrons from –ve terminal of the battery to plate l

à plate l gains electrons à becomes negatively charged 

� (as much as plate h, losing electrons, plate l gaining)

65725-2 CAPACITANCE
PART 3

HALLIDAY REVISED

shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Section 25-6, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the #V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q $ CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad $ 1 F $ 1 coulomb per volt $ 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates.The field is not uniform at the edges of
the plates, as indicated by the “fringing” of the field lines there.
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that maintains a certain potential difference between its terminals (points at
which charge can enter or leave the battery) by means of internal electrochemi-
cal reactions in which electric forces can move internal charge.

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and inter-
connecting wires form a circuit. The same circuit is shown in the schematic dia-
gram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor
represent those devices. The battery maintains potential difference V between its
terminals. The terminal of higher potential is labeled ! and is often called the
positive terminal; the terminal of lower potential is labeled " and is often called
the negative terminal.

The circuit shown in Figs. 25-4a and b is said to be incomplete because
switch S is open; that is, the switch does not electrically connect the wires 
attached to it. When the switch is closed, electrically connecting those wires, the
circuit is complete and charge can then flow through the switch and the wires.
As we discussed in Chapter 21, the charge that can flow through a conductor,
such as a wire, is that of electrons. When the circuit of Fig. 25-4 is completed,
electrons are driven through the wires by an electric field that the battery sets
up in the wires. The field drives electrons from capacitor plate h to the positive
terminal of the battery; thus, plate h, losing electrons, becomes positively
charged. The field drives just as many electrons from the negative terminal of
the battery to capacitor plate l; thus, plate l, gaining electrons, becomes nega-
tively charged just as much as plate h, losing electrons, becomes positively
charged.

Initially, when the plates are uncharged, the potential difference between
them is zero. As the plates become oppositely charged, that potential differ-
ence increases until it equals the potential difference V between the terminals
of the battery. Then plate h and the positive terminal of the battery are at the
same potential, and there is no longer an electric field in the wire between
them. Similarly, plate l and the negative terminal reach the same potential,
and there is then no electric field in the wire between them. Thus, with the
field zero, there is no further drive of electrons. The capacitor is then said to
be fully charged, with a potential difference V and charge q that are related
by Eq. 25-1.

In this book we assume that during the charging of a capacitor and after-
ward, charge cannot pass from one plate to the other across the gap separating
them. Also, we assume that a capacitor can retain (or store) charge indefinitely,
until it is put into a circuit where it can be discharged.

Fig. 25-4 (a) Battery B, switch S, and plates h and l of capacitor C, connected in a cir-
cuit. (b) A schematic diagram with the circuit elements represented by their symbols.
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Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when
the charge q on it is doubled and (b) when the potential difference V across it is
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� When plates are uncharged à V between them = zero

� During charging, potential difference V increases until becomes equals to potential 
difference V of the battery

� à plate h & +ve terminal of the battery have same potential
à no electric field in the wire between them

� Similarly, plate l & -ve terminal reach the same potential
à no electric field in the wire between them

� When E = zero between battery and plates
à no further drive of electrons
à capacitor is fully charged
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Calculating the Capacitance 

1. Assume a charge = q on the plates

2. Calculate E between the plates using Gauss’ law  à

3. Calculate V between the plates à

4. Calculate C à

Calculating the Electric Field:

� E and dA is parallelà
à 𝐸 = 𝑞/𝜀&𝐴

� Calculating the Potential Difference: 

� We choose a path follows electric field line from –ve to +ve plate
� For this path, the vectors E & ds have opposite directions à

24-5 Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-7.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electrostatic force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-4, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find

(24-18)

Thus, the potential difference Vf ! Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electrostatic force is
conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.
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CHECKPOINT 3

The figure here shows a family of par-
allel equipotential surfaces (in cross
section) and five paths along which we
shall move an electron from one sur-
face to another. (a) What is the direc-
tion of the electric field associated with
the surfaces? (b) For each path, is the
work we do positive, negative, or zero?
(c) Rank the paths according to the
work we do, greatest first.
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63324-5 CALCU LATI NG TH E POTE NTIAL FROM TH E F I E LD
PART 3

Fig. 24-4 A test charge q0 moves
from point i to point f along the path
shown in a nonuniform electric field.
During a displacement , an elec-
trostatic force acts on the test
charge.This force points in the direc-
tion of the field line at the location of
the test charge.
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shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Section 25-6, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the #V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q $ CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad $ 1 F $ 1 coulomb per volt $ 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates.The field is not uniform at the edges of
the plates, as indicated by the “fringing” of the field lines there.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Additional examples, video, and practice available at WileyPLUS
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.

KEY I DEA

1 9 8 8  

L I B E R T Y 

IN GOD WE 
TRUST

L I B E R T Y 

q1

q2

q3

S
+

–

–

+
–q4

q5

Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 611

65725-2 CAPACITANCE
PART 3

HALLIDAY REVISED

shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Section 25-6, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the #V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q $ CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad $ 1 F $ 1 coulomb per volt $ 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates.The field is not uniform at the edges of
the plates, as indicated by the “fringing” of the field lines there.

Area A  V

d

Top side of
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charge –q

A

–q

+q

(b)(a)

Bottom side of
top plate has
charge +q

Electric field lines
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25-3 Calculating the Capacitance
Our goal here is to calculate the capacitance of a capacitor once we know its
geometry. Because we shall consider a number of different geometries, it seems
wise to develop a general plan to simplify the work. In brief our plan is as follows:
(1) Assume a charge q on the plates; (2) calculate the electric field between
the plates in terms of this charge, using Gauss’ law; (3) knowing , calculate the
potential difference V between the plates from Eq. 24-18; (4) calculate C from
Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field and
the potential difference by making certain assumptions. We discuss each in turn.

Calculating the Electric Field
To relate the electric field between the plates of a capacitor to the charge q on
either plate, we shall use Gauss’ law:

(25-3)

Here q is the charge enclosed by a Gaussian surface and is the net
electric flux through that surface. In all cases that we shall consider, the Gaussian
surface will be such that whenever there is an electric flux through it, will have
a uniform magnitude E and the vectors and will be parallel. Equation 25-3
then reduces to

q ! "0EA (special case of Eq. 25-3), (25-4)

in which A is the area of that part of the Gaussian surface through which there is a
flux. For convenience, we shall always draw the Gaussian surface in such a way that
it completely encloses the charge on the positive plate; see Fig. 25-5 for an example.

Calculating the Potential Difference
In the notation of Chapter 24 (Eq. 24-18), the potential difference between
the plates of a capacitor is related to the field by

(25-5)

in which the integral is to be evaluated along any path that starts on one plate
and ends on the other. We shall always choose a path that follows an electric
field line, from the negative plate to the positive plate. For this path, the vectors

and will have opposite directions; so the dot product will be equal
to # E ds.Thus, the right side of Eq. 25-5 will then be positive. Letting V represent
the difference Vf # Vi , we can then recast Eq. 25-5 as

(special case of Eq. 25-5), (25-6)

in which the # and $ remind us that our path of integration starts on the nega-
tive plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are
so large and so close together that we can neglect the fringing of the electric field

V ! !$

#
E ds

E
:

! d s:d s:E
:

Vf # Vi ! # !f

i
 E

:
! d s:,

E
:

dA
:

E
:

E
:

" E
:

! dA
:

"0 # E
:

! dA
:

! q.

E
:

E
:

E
:

Fig. 25-5 A charged parallel-plate ca-
pacitor. A Gaussian surface encloses the
charge on the positive plate. The integra-
tion of Eq. 25-6 is taken along a path ex-
tending directly from the negative plate to
the positive plate.
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25-3 Calculating the Capacitance
Our goal here is to calculate the capacitance of a capacitor once we know its
geometry. Because we shall consider a number of different geometries, it seems
wise to develop a general plan to simplify the work. In brief our plan is as follows:
(1) Assume a charge q on the plates; (2) calculate the electric field between
the plates in terms of this charge, using Gauss’ law; (3) knowing , calculate the
potential difference V between the plates from Eq. 24-18; (4) calculate C from
Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field and
the potential difference by making certain assumptions. We discuss each in turn.

Calculating the Electric Field
To relate the electric field between the plates of a capacitor to the charge q on
either plate, we shall use Gauss’ law:

(25-3)

Here q is the charge enclosed by a Gaussian surface and is the net
electric flux through that surface. In all cases that we shall consider, the Gaussian
surface will be such that whenever there is an electric flux through it, will have
a uniform magnitude E and the vectors and will be parallel. Equation 25-3
then reduces to

q ! "0EA (special case of Eq. 25-3), (25-4)

in which A is the area of that part of the Gaussian surface through which there is a
flux. For convenience, we shall always draw the Gaussian surface in such a way that
it completely encloses the charge on the positive plate; see Fig. 25-5 for an example.

Calculating the Potential Difference
In the notation of Chapter 24 (Eq. 24-18), the potential difference between
the plates of a capacitor is related to the field by

(25-5)

in which the integral is to be evaluated along any path that starts on one plate
and ends on the other. We shall always choose a path that follows an electric
field line, from the negative plate to the positive plate. For this path, the vectors

and will have opposite directions; so the dot product will be equal
to # E ds.Thus, the right side of Eq. 25-5 will then be positive. Letting V represent
the difference Vf # Vi , we can then recast Eq. 25-5 as

(special case of Eq. 25-5), (25-6)

in which the # and $ remind us that our path of integration starts on the nega-
tive plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are
so large and so close together that we can neglect the fringing of the electric field

V ! !$

#
E ds
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:
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:
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:

Fig. 25-5 A charged parallel-plate ca-
pacitor. A Gaussian surface encloses the
charge on the positive plate. The integra-
tion of Eq. 25-6 is taken along a path ex-
tending directly from the negative plate to
the positive plate.
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shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Section 25-6, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the #V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q $ CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad $ 1 F $ 1 coulomb per volt $ 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF $ 10"6 F) and the picofarad (1 pF $ 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device

Fig. 25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by
a distance d.The charges on the facing plate surfaces have the same magnitude q but
opposite signs. (b) As the field lines show, the electric field due to the charged plates is
uniform in the central region between the plates.The field is not uniform at the edges of
the plates, as indicated by the “fringing” of the field lines there.
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A Parallel-Plate Capacitor 

A: plate area, d distance between plates

25-3 Calculating the Capacitance
Our goal here is to calculate the capacitance of a capacitor once we know its
geometry. Because we shall consider a number of different geometries, it seems
wise to develop a general plan to simplify the work. In brief our plan is as follows:
(1) Assume a charge q on the plates; (2) calculate the electric field between
the plates in terms of this charge, using Gauss’ law; (3) knowing , calculate the
potential difference V between the plates from Eq. 24-18; (4) calculate C from
Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field and
the potential difference by making certain assumptions. We discuss each in turn.

Calculating the Electric Field
To relate the electric field between the plates of a capacitor to the charge q on
either plate, we shall use Gauss’ law:

(25-3)

Here q is the charge enclosed by a Gaussian surface and is the net
electric flux through that surface. In all cases that we shall consider, the Gaussian
surface will be such that whenever there is an electric flux through it, will have
a uniform magnitude E and the vectors and will be parallel. Equation 25-3
then reduces to

q ! "0EA (special case of Eq. 25-3), (25-4)

in which A is the area of that part of the Gaussian surface through which there is a
flux. For convenience, we shall always draw the Gaussian surface in such a way that
it completely encloses the charge on the positive plate; see Fig. 25-5 for an example.

Calculating the Potential Difference
In the notation of Chapter 24 (Eq. 24-18), the potential difference between
the plates of a capacitor is related to the field by

(25-5)

in which the integral is to be evaluated along any path that starts on one plate
and ends on the other. We shall always choose a path that follows an electric
field line, from the negative plate to the positive plate. For this path, the vectors

and will have opposite directions; so the dot product will be equal
to # E ds.Thus, the right side of Eq. 25-5 will then be positive. Letting V represent
the difference Vf # Vi , we can then recast Eq. 25-5 as

(special case of Eq. 25-5), (25-6)

in which the # and $ remind us that our path of integration starts on the nega-
tive plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are
so large and so close together that we can neglect the fringing of the electric field
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Fig. 25-5 A charged parallel-plate ca-
pacitor. A Gaussian surface encloses the
charge on the positive plate. The integra-
tion of Eq. 25-6 is taken along a path ex-
tending directly from the negative plate to
the positive plate.
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at the edges of the plates, taking to be constant throughout the region between
the plates.

We draw a Gaussian surface that encloses just the charge q on the positive
plate, as in Fig. 25-5. From Eq. 25-4 we can then write

q ! "0EA, (25-7)
where A is the area of the plate.

Equation 25-6 yields

(25-8)

In Eq. 25-8, E can be placed outside the integral because it is a constant; the sec-
ond integral then is simply the plate separation d.

If we now substitute q from Eq. 25-7 and V from Eq. 25-8 into the relation 
q ! CV (Eq. 25-1), we find

(parallel-plate capacitor). (25-9)

Thus, the capacitance does indeed depend only on geometrical factors—namely,
the plate area A and the plate separation d. Note that C increases as we increase
area A or decrease separation d.

As an aside, we point out that Eq. 25-9 suggests one of our reasons for writing
the electrostatic constant in Coulomb’s law in the form 1/4p"0. If we had not
done so, Eq. 25-9—which is used more often in engineering practice than
Coulomb’s law—would have been less simple in form. We note further that
Eq. 25-9 permits us to express the permittivity constant "0 in a unit more appro-
priate for use in problems involving capacitors; namely,

"0 ! 8.85 # 10$ 12 F/m ! 8.85 pF/m. (25-10)

We have previously expressed this constant as

"0 ! 8.85 # 10$ 12 C2/N % m2. (25-11)

A Cylindrical Capacitor
Figure 25-6 shows, in cross section, a cylindrical capacitor of length L formed by
two coaxial cylinders of radii a and b. We assume that L & b so that we can
neglect the fringing of the electric field that occurs at the ends of the cylinders.
Each plate contains a charge of magnitude q.

As a Gaussian surface, we choose a cylinder of length L and radius r, closed
by end caps and placed as is shown in Fig. 25-6. It is coaxial with the cylinders and
encloses the central cylinder and thus also the charge q on that cylinder. Equation
25-4 then relates that charge and the field magnitude E as

q ! "0EA ! "0E(2prL),

in which 2prL is the area of the curved part of the Gaussian surface. There is
no flux through the end caps. Solving for E yields

(25-12)

Substitution of this result into Eq. 25-6 yields

(25-13)

where we have used the fact that here ds ! $ dr (we integrated radially inward).
From the relation C ! q/V, we then have
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E ds ! $

q
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Fig. 25-6 A cross section of a long cylin-
drical capacitor, showing a cylindrical
Gaussian surface of radius r (that encloses
the positive plate) and the radial path of in-
tegration along which Eq. 25-6 is to be ap-
plied.This figure also serves to illustrate a
spherical capacitor in a cross section
through its center.
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25-3 Calculating the Capacitance
Our goal here is to calculate the capacitance of a capacitor once we know its
geometry. Because we shall consider a number of different geometries, it seems
wise to develop a general plan to simplify the work. In brief our plan is as follows:
(1) Assume a charge q on the plates; (2) calculate the electric field between
the plates in terms of this charge, using Gauss’ law; (3) knowing , calculate the
potential difference V between the plates from Eq. 24-18; (4) calculate C from
Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field and
the potential difference by making certain assumptions. We discuss each in turn.

Calculating the Electric Field
To relate the electric field between the plates of a capacitor to the charge q on
either plate, we shall use Gauss’ law:

(25-3)

Here q is the charge enclosed by a Gaussian surface and is the net
electric flux through that surface. In all cases that we shall consider, the Gaussian
surface will be such that whenever there is an electric flux through it, will have
a uniform magnitude E and the vectors and will be parallel. Equation 25-3
then reduces to

q ! "0EA (special case of Eq. 25-3), (25-4)

in which A is the area of that part of the Gaussian surface through which there is a
flux. For convenience, we shall always draw the Gaussian surface in such a way that
it completely encloses the charge on the positive plate; see Fig. 25-5 for an example.

Calculating the Potential Difference
In the notation of Chapter 24 (Eq. 24-18), the potential difference between
the plates of a capacitor is related to the field by

(25-5)

in which the integral is to be evaluated along any path that starts on one plate
and ends on the other. We shall always choose a path that follows an electric
field line, from the negative plate to the positive plate. For this path, the vectors

and will have opposite directions; so the dot product will be equal
to # E ds.Thus, the right side of Eq. 25-5 will then be positive. Letting V represent
the difference Vf # Vi , we can then recast Eq. 25-5 as

(special case of Eq. 25-5), (25-6)

in which the # and $ remind us that our path of integration starts on the nega-
tive plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are
so large and so close together that we can neglect the fringing of the electric field
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Fig. 25-5 A charged parallel-plate ca-
pacitor. A Gaussian surface encloses the
charge on the positive plate. The integra-
tion of Eq. 25-6 is taken along a path ex-
tending directly from the negative plate to
the positive plate.
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25-3 Calculating the Capacitance
Our goal here is to calculate the capacitance of a capacitor once we know its
geometry. Because we shall consider a number of different geometries, it seems
wise to develop a general plan to simplify the work. In brief our plan is as follows:
(1) Assume a charge q on the plates; (2) calculate the electric field between
the plates in terms of this charge, using Gauss’ law; (3) knowing , calculate the
potential difference V between the plates from Eq. 24-18; (4) calculate C from
Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field and
the potential difference by making certain assumptions. We discuss each in turn.

Calculating the Electric Field
To relate the electric field between the plates of a capacitor to the charge q on
either plate, we shall use Gauss’ law:

(25-3)

Here q is the charge enclosed by a Gaussian surface and is the net
electric flux through that surface. In all cases that we shall consider, the Gaussian
surface will be such that whenever there is an electric flux through it, will have
a uniform magnitude E and the vectors and will be parallel. Equation 25-3
then reduces to

q ! "0EA (special case of Eq. 25-3), (25-4)

in which A is the area of that part of the Gaussian surface through which there is a
flux. For convenience, we shall always draw the Gaussian surface in such a way that
it completely encloses the charge on the positive plate; see Fig. 25-5 for an example.

Calculating the Potential Difference
In the notation of Chapter 24 (Eq. 24-18), the potential difference between
the plates of a capacitor is related to the field by

(25-5)

in which the integral is to be evaluated along any path that starts on one plate
and ends on the other. We shall always choose a path that follows an electric
field line, from the negative plate to the positive plate. For this path, the vectors

and will have opposite directions; so the dot product will be equal
to # E ds.Thus, the right side of Eq. 25-5 will then be positive. Letting V represent
the difference Vf # Vi , we can then recast Eq. 25-5 as

(special case of Eq. 25-5), (25-6)

in which the # and $ remind us that our path of integration starts on the nega-
tive plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are
so large and so close together that we can neglect the fringing of the electric field
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Fig. 25-5 A charged parallel-plate ca-
pacitor. A Gaussian surface encloses the
charge on the positive plate. The integra-
tion of Eq. 25-6 is taken along a path ex-
tending directly from the negative plate to
the positive plate.
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Problems: 

1. A parallel-plate capacitor with plate's area of 25cm2 and separation of 17.7mm is charged by 
applying a voltage of  12V across its ends. Calculate the total charge of the capacitor. 

𝐶 =
𝐴𝜀&
𝑑

=
25×10/0×8.85×10/34

17.7×10/6
= 1.25𝑝𝐹

𝑞 = 𝐶𝑉 = 1.25×10/34×12 = 15pC



2. A parallel plate capacitor has a capacitance of 8𝜇F. Calculate the capacitance if the 
i. Plate separation is doubled

𝐶 = ;<=
>
= 8𝜇F

When d’ = 2d à 𝐶@ = ;<=
4>

= A
4
= 4𝜇F

ii. Plate area is doubled 
When A’ = 2A à 𝐶@ = 4;<=

>
= 2(8) = 16𝜇F

Problems: 



66125-3 CALCU LATI NG TH E CAPACITANCE
PART 3

HALLIDAY REVISED

(cylindrical capacitor). (25-14)

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate
capacitor, depends only on geometrical factors, in this case the length L and the
two radii b and a.

A Spherical Capacitor
Figure 25-6 can also serve as a central cross section of a capacitor that consists of
two concentric spherical shells, of radii a and b. As a Gaussian surface we draw a
sphere of radius r concentric with the two shells; then Eq. 25-4 yields

q ! "0 EA ! "0 E(4pr 2),

in which 4pr2 is the area of the spherical Gaussian surface.We solve this equation
for E, obtaining

(25-15)

which we recognize as the expression for the electric field due to a uniform spher-
ical charge distribution (Eq. 23-15).

If we substitute this expression into Eq. 25-6, we find

(25-16)

where again we have substituted # dr for ds. If we now substitute Eq. 25-16 into
Eq. 25-1 and solve for C, we find

(spherical capacitor). (25-17)

An Isolated Sphere
We can assign a capacitance to a single isolated spherical conductor of radius R
by assuming that the “missing plate” is a conducting sphere of infinite radius.
After all, the field lines that leave the surface of a positively charged isolated
conductor must end somewhere; the walls of the room in which the conductor is
housed can serve effectively as our sphere of infinite radius.

To find the capacitance of the conductor, we first rewrite Eq. 25-17 as

If we then let b : $ and substitute R for a, we find

C ! 4p"0 R (isolated sphere). (25-18)

Note that this formula and the others we have derived for capacitance (Eqs. 25-9,
25-14, and 25-17) involve the constant "0 multiplied by a quantity that has the
dimensions of a length.

C ! 4%"0
a

1 # a/b
.

C ! 4%"0
ab

b # a

V ! !&

#
E ds ! #

q
4%"0

!a

b

dr
r 2 !

q
4%"0

" 1
a

#
1
b # !

q
4%"0

b # a
ab

,

E !
1

4%"0

q
r 2  ,

C ! 2%"0
L

ln(b/a)

CHECKPOINT 2

For capacitors charged by the same battery, does the charge stored by the capacitor
increase, decrease, or remain the same in each of the following situations? (a) The
plate separation of a parallel-plate capacitor is increased. (b) The area of the plate of a 
parallel-plate capacitor is increased.  
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(cylindrical capacitor). (25-14)

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate
capacitor, depends only on geometrical factors, in this case the length L and the
two radii b and a.

A Spherical Capacitor
Figure 25-6 can also serve as a central cross section of a capacitor that consists of
two concentric spherical shells, of radii a and b. As a Gaussian surface we draw a
sphere of radius r concentric with the two shells; then Eq. 25-4 yields

q ! "0 EA ! "0 E(4pr 2),

in which 4pr2 is the area of the spherical Gaussian surface.We solve this equation
for E, obtaining

(25-15)

which we recognize as the expression for the electric field due to a uniform spher-
ical charge distribution (Eq. 23-15).

If we substitute this expression into Eq. 25-6, we find

(25-16)

where again we have substituted # dr for ds. If we now substitute Eq. 25-16 into
Eq. 25-1 and solve for C, we find

(25-17)

An Isolated Sphere
We can assign a capacitance to a single isolated spherical conductor of radius R
by assuming that the “missing plate” is a conducting sphere of infinite radius.
After all, the field lines that leave the surface of a positively charged isolated
conductor must end somewhere; the walls of the room in which the conductor is
housed can serve effectively as our sphere of infinite radius.

To find the capacitance of the conductor, we first rewrite Eq. 25-17 as

If we then let b : $ and substitute R for a, we find

C ! 4p"0 R (isolated sphere). (25-18)

Note that this formula and the others we have derived for capacitance (Eqs. 25-9,
25-14, and 25-17) involve the constant "0 multiplied by a quantity that has the
dimensions of a length.
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CHECKPOINT 2

For capacitors charged by the same battery, does the charge stored by the capacitor
increase, decrease, or remain the same in each of the following situations? (a) The
plate separation of a parallel-plate capacitor is increased. (b) The radius of the inner
cylinder of a cylindrical capacitor is increased. (c) The radius of the outer spherical
shell of a spherical capacitor is increased.
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at the edges of the plates, taking to be constant throughout the region between
the plates.

We draw a Gaussian surface that encloses just the charge q on the positive
plate, as in Fig. 25-5. From Eq. 25-4 we can then write

q ! "0EA, (25-7)
where A is the area of the plate.

Equation 25-6 yields

(25-8)

In Eq. 25-8, E can be placed outside the integral because it is a constant; the sec-
ond integral then is simply the plate separation d.

If we now substitute q from Eq. 25-7 and V from Eq. 25-8 into the relation 
q ! CV (Eq. 25-1), we find

(parallel-plate capacitor). (25-9)

Thus, the capacitance does indeed depend only on geometrical factors—namely,
the plate area A and the plate separation d. Note that C increases as we increase
area A or decrease separation d.

As an aside, we point out that Eq. 25-9 suggests one of our reasons for writing
the electrostatic constant in Coulomb’s law in the form 1/4p"0. If we had not
done so, Eq. 25-9—which is used more often in engineering practice than
Coulomb’s law—would have been less simple in form. We note further that
Eq. 25-9 permits us to express the permittivity constant "0 in a unit more appro-
priate for use in problems involving capacitors; namely,

"0 ! 8.85 # 10$ 12 F/m ! 8.85 pF/m. (25-10)

We have previously expressed this constant as

"0 ! 8.85 # 10$ 12 C2/N % m2. (25-11)

A Cylindrical Capacitor
Figure 25-6 shows, in cross section, a cylindrical capacitor of length L formed by
two coaxial cylinders of radii a and b. We assume that L & b so that we can
neglect the fringing of the electric field that occurs at the ends of the cylinders.
Each plate contains a charge of magnitude q.

As a Gaussian surface, we choose a cylinder of length L and radius r, closed
by end caps and placed as is shown in Fig. 25-6. It is coaxial with the cylinders and
encloses the central cylinder and thus also the charge q on that cylinder. Equation
25-4 then relates that charge and the field magnitude E as

q ! "0EA ! "0E(2prL),

in which 2prL is the area of the curved part of the Gaussian surface. There is
no flux through the end caps. Solving for E yields

(25-12)

Substitution of this result into Eq. 25-6 yields

(25-13)

where we have used the fact that here ds ! $ dr (we integrated radially inward).
From the relation C ! q/V, we then have
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Fig. 25-6 A cross section of a long cylin-
drical capacitor, showing a cylindrical
Gaussian surface of radius r (that encloses
the positive plate) and the radial path of in-
tegration along which Eq. 25-6 is to be ap-
plied.This figure also serves to illustrate a
spherical capacitor in a cross section
through its center.
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(25-14)

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate
capacitor, depends only on geometrical factors, in this case the length L and the
two radii b and a.

A Spherical Capacitor
Figure 25-6 can also serve as a central cross section of a capacitor that consists of
two concentric spherical shells, of radii a and b. As a Gaussian surface we draw a
sphere of radius r concentric with the two shells; then Eq. 25-4 yields

q ! "0 EA ! "0 E(4pr 2),

in which 4pr2 is the area of the spherical Gaussian surface.We solve this equation
for E, obtaining

(25-15)

which we recognize as the expression for the electric field due to a uniform spher-
ical charge distribution (Eq. 23-15).

If we substitute this expression into Eq. 25-6, we find

(25-16)

where again we have substituted # dr for ds. If we now substitute Eq. 25-16 into
Eq. 25-1 and solve for C, we find

(spherical capacitor). (25-17)

An Isolated Sphere
We can assign a capacitance to a single isolated spherical conductor of radius R
by assuming that the “missing plate” is a conducting sphere of infinite radius.
After all, the field lines that leave the surface of a positively charged isolated
conductor must end somewhere; the walls of the room in which the conductor is
housed can serve effectively as our sphere of infinite radius.

To find the capacitance of the conductor, we first rewrite Eq. 25-17 as

If we then let b : $ and substitute R for a, we find

C ! 4p"0 R (isolated sphere). (25-18)

Note that this formula and the others we have derived for capacitance (Eqs. 25-9,
25-14, and 25-17) involve the constant "0 multiplied by a quantity that has the
dimensions of a length.
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CHECKPOINT 2

For capacitors charged by the same battery, does the charge stored by the capacitor
increase, decrease, or remain the same in each of the following situations? (a) The
plate separation of a parallel-plate capacitor is increased. (b) The radius of the inner
cylinder of a cylindrical capacitor is increased. (c) The radius of the outer spherical
shell of a spherical capacitor is increased.
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Capacitors in Parallel and in Series 
� To simplify circuit, we replace a combination of capacitors in a circuit, with an equivalent capacitor 

� Equivalent capacitor: a single capacitor that has the same capacitance as the actual combination of capacitors

Parallel Series 

Capacitors Combinations



� Capacitors in Parallel
� “in parallel” means that the capacitors are directly wired together at one plate and directly wired together at the other plate 
� Each capacitor has same V, which produces a charge on each capacitor

66325-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3

HALLIDAY REVISED

When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.

V 
+q3 

V – 
+ 

Terminal 

C3 

B 

(a)

–q

+q
V

+
–

(b)

Ceq

B

Terminal 

–q3 

+q2 

–q2 C2 

V 
+q1 

–q1 C1 

V 

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.

V 
+q3 

V – 
+ 

Terminal 

C3 

B 

(a)

–q

+q
V

+
–

(b)

Ceq

B

Terminal 

–q3 

+q2 

–q2 C2 

V 
+q1 

–q1 C1 

V 

Parallel capacitors and
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When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.

V 
+q3 

V – 
+ 

Terminal 

C3 

B 

(a)

–q

+q
V

+
–

(b)

Ceq

B

Terminal 

–q3 

+q2 

–q2 C2 

V 
+q1 

–q1 C1 

V 

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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the same q (“seri-q”).
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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Series capacitors and
their equivalent have
the same q (“seri-q”).
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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Series capacitors and
their equivalent have
the same q (“seri-q”).
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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their equivalent have
the same q (“seri-q”).
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.

1
Ceq

# !
n

j#1

1
Cj

1
Ceq

#
1

C1
"

1
C2

"
1

C3
.

Ceq #
q
V

#
1

1/C1 " 1/C2 " 1/C3
,

V # V1 " V2 " V3 # q " 1
C1

"
1

C2
"

1
C3

#.

V1 #
q
C1

, V2 #
q
C2

, and V3 #
q
C3

.

Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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the same q (“seri-q”).
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it

halliday_c25_656-681v2.qxd  23-11-2009  14:32  Page 663

66325-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3

HALLIDAY REVISED

When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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 Cj
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q
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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Series capacitors and
their equivalent have
the same q (“seri-q”).
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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the same q (“seri-q”).
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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Series capacitors and
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the same q (“seri-q”).
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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q
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.

V 
+q3 

V – 
+ 

Terminal 

C3 

B 

(a)

–q

+q
V

+
–

(b)

Ceq

B

Terminal 

–q3 

+q2 

–q2 C2 

V 
+q1 

–q1 C1 

V 

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.
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Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.
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Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.

1
Ceq

# !
n

j#1

1
Cj

1
Ceq

#
1

C1
"

1
C2

"
1

C3
.

Ceq #
q
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#
1

1/C1 " 1/C2 " 1/C3
,

V # V1 " V2 " V3 # q " 1
C1

"
1

C2
"

1
C3

#.

V1 #
q
C1

, V2 #
q
C2

, and V3 #
q
C3

.

Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?

V 

(b) 

Ceq 

V 
+ 
– 

(a) 

B 

+q 

C1 

C2 

C3 

V1 

V2 

V3 

– 
+ 

B 

Terminal 

Terminal 

–q 

+q 

–q 

–q 

+q 

–q 

+q 

Series capacitors and
their equivalent have
the same q (“seri-q”).
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor.The total charge
q stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that
has the same total charge q and the same potential difference V as the actual 
capacitors.

(You might remember this result with the nonsense word “par-V,” which is close
to “party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the
three capacitors (with actual capacitances C1, C2, and C3) of Fig. 25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 " q2 " q3 ! (C1 " C2 " C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Ceq ! !
n

j!1
 Cj

Ceq !
q
V

 ! C1 " C2 " C3,

Fig. 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.

V 
+q3 

V – 
+ 

Terminal 

C3 

B 

(a)

–q

+q
V

+
–

(b)

Ceq

B

Terminal 

–q3 

+q2 

–q2 C2 

V 
+q1 

–q1 C1 

V 

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following
a chain reaction of events, in which the charging of each capacitor causes the
charging of the next capacitor. We start with capacitor 3 and work upward to
capacitor 1. When the battery is first connected to the series of capacitors, it
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produces charge !q on the bottom plate of capacitor 3. That charge then repels
negative charge from the top plate of capacitor 3 (leaving it with charge "q).The
repelled negative charge moves to the bottom plate of capacitor 2 (giving it
charge !q). That charge on the bottom plate of capacitor 2 then repels negative
charge from the top plate of capacitor 2 (leaving it with charge "q) to the bottom
plate of capacitor 1 (giving it charge !q). Finally, the charge on the bottom plate
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the
battery, leaving that top plate with charge "q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9 a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9 a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9 a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit. Thus, the net charge of that part cannot be changed by the battery—
its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9 b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9 a.

To derive an expression for Ceq in Fig. 25-9 b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum of these three
potential differences.Thus,

The equivalent capacitance is then

or

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.
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Fig. 25-9 (a) Three capacitors con-
nected in series to battery B.The battery
maintains potential difference V between
the top and bottom plates of the series
combination. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.

Capacitors that are connected in series can be replaced with an equivalent capacitor that
has the same charge q and the same total potential difference V as the actual series capacitors.

CHECKPOINT 3

A battery of potential V stores charge q
on a combination of two identical ca-
pacitors. What are the potential differ-
ence across and the charge on either ca-
pacitor if the capacitors are (a) in
parallel and (b) in series?
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Series capacitors and
their equivalent have
the same q (“seri-q”).
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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666 CHAPTE R 25 CAPACITANCE

HALLIDAY REVISED

From Eq. 25-20, we have

from which

(Answer)

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

C123 !
1

0.280 "F# 1 ! 3.57 "F.

 !
1

17.3 "F
$

1
4.50 "F

! 0.280 "F# 1,

1
C123

!
1

C12
$

1
C3

 

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
q12

C12
!

44.6 "C
17.3 "F

! 2.58 V.
KEY I DEAS

Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

66525-4 CAPACITORS I N PARALLE L AN D I N S E R I E S
PART 3

HALLIDAY REVISED

Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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From Eq. 25-20, we have

from which

(Answer)

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

C123 !
1

0.280 "F# 1 ! 3.57 "F.

 !
1

17.3 "F
$

1
4.50 "F

! 0.280 "F# 1,

1
C123

!
1

C12
$

1
C3

 

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
q12

C12
!

44.6 "C
17.3 "F

! 2.58 V.
KEY I DEAS

Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.
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From Eq. 25-20, we have

from which

(Answer)

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

C123 !
1

0.280 "F# 1 ! 3.57 "F.

 !
1

17.3 "F
$

1
4.50 "F

! 0.280 "F# 1,

1
C123

!
1

C12
$

1
C3

 

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
q12

C12
!

44.6 "C
17.3 "F

! 2.58 V.
KEY I DEAS

Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.
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From Eq. 25-20, we have

from which

(Answer)

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

C123 !
1

0.280 "F# 1 ! 3.57 "F.

 !
1

17.3 "F
$

1
4.50 "F

! 0.280 "F# 1,

1
C123

!
1

C12
$

1
C3

 

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
q12

C12
!

44.6 "C
17.3 "F

! 2.58 V.
KEY I DEAS

Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.
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From Eq. 25-20, we have

from which

(Answer)

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

C123 !
1

0.280 "F# 1 ! 3.57 "F.

 !
1

17.3 "F
$

1
4.50 "F

! 0.280 "F# 1,

1
C123

!
1

C12
$

1
C3

 

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
q12

C12
!

44.6 "C
17.3 "F

! 2.58 V.
KEY I DEAS

Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.
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From Eq. 25-20, we have

from which

(Answer)

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

C123 !
1

0.280 "F# 1 ! 3.57 "F.

 !
1

17.3 "F
$

1
4.50 "F

! 0.280 "F# 1,

1
C123

!
1

C12
$

1
C3

 

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
q12

C12
!

44.6 "C
17.3 "F

! 2.58 V.
KEY I DEAS

Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.
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From Eq. 25-20, we have

from which
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(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.
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Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
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44.6 "C
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! 2.58 V.
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Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.
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From Eq. 25-20, we have

from which

(Answer)

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

C123 !
1

0.280 "F# 1 ! 3.57 "F.

 !
1

17.3 "F
$

1
4.50 "F

! 0.280 "F# 1,

1
C123

!
1

C12
$

1
C3

 

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
q12

C12
!

44.6 "C
17.3 "F

! 2.58 V.
KEY I DEAS

Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.
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From Eq. 25-20, we have

from which

(Answer)

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

C123 !
1

0.280 "F# 1 ! 3.57 "F.

 !
1

17.3 "F
$

1
4.50 "F

! 0.280 "F# 1,

1
C123

!
1

C12
$

1
C3

 

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g , the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 "C.

q1 ! C1V1 ! (12.0 "F)(2.58 V)

V12 !
q12

C12
!

44.6 "C
17.3 "F

! 2.58 V.
KEY I DEAS

Sample Problem

q0 ! C1V0 ! (3.55 %  10# 6 F) (6.30 V)
! 22.365 %  10# 6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).

Because the total charge cannot magically change, the total
after the transfer must be

q1 $  q2 ! q0 (charge conservation);

q1

C1
!

q2

C2

One capacitor charging up another capacitor

Capacitor 1, with C1 ! 3.55 mF, is charged to a potential 
difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

The situation here differs from the previous example because
here an applied electric potential is not maintained across a
combination of capacitors by a battery or some other source.
Here, just after switch S is closed, the only applied electric po-
tential is that of capacitor 1 on capacitor 2, and that potential
is decreasing. Thus, the capacitors in Fig. 25-11 are not con-
nected in series; and although they are drawn parallel, in this
situation they are not in parallel.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached when
the two potentials are equal because, with no potential differ-
ence between connected plates of the capacitors, there is no
electric field within the connecting wires to move conduction
electrons. The initial charge on capacitor 1 is then shared be-
tween the two capacitors.

Calculations: Initially, when  capacitor 1 is connected to
the battery, the charge it acquires is, from Eq. 25-1,

KEY I DEAS

Fig. 25-11 A potential differ-
ence V0 is applied to capacitor 1
and the charging battery is re-
moved. Switch S is then closed so
that the charge on capacitor 1 is
shared with capacitor 2.

S 

C2 C1 

q0 

After the switch is closed,
charge is transferred until
the potential differences
match.

halliday_c25_656-681v2.qxd  23-11-2009  14:32  Page 666

Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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Sample Problem

charge, capacitor 3 is not in series with capacitor 1 (or ca-
pacitor 2).

Are capacitor 1 and capacitor 2 in parallel? Yes.
Their top plates are directly wired together and their
bottom plates are directly wired together, and electric
potential is applied between the top-plate pair and the
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are
in parallel, and Eq. 25-19 tells us that their equivalent ca-
pacitance C12 is

C12 ! C1 " C2 ! 12.0 mF " 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10aand b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.

Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY I DEA

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i)

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.
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Fig. 25-10 (a) – (d) Three capacitors are reduced to one equivalent capacitor. (e) – (i)
Working backwards to get the charges.

A

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10aare in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the
bottom plates of both capacitor 1 and capacitor 2.
Because there is more than one route for the shifting
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6. In this figure, C1 = 6𝜇F and C2 = C3 = C4 = 2𝜇F. Calculate the equivalent capacitance.

C2, C3 & C4 are in parallel à C234 = 2 + 2 + 2 = 6 𝜇F

C1 & C234 are in series à Ceq = SW×SXV`
SWaSXV`

= H×H
HaH

= 3𝜇F

7. Calculate the equivalent capacitance this figure,

1𝜇F + 3𝜇F = 4𝜇F 

6𝜇F + 2𝜇F = 8𝜇F

4×4
4 + 4 = 2𝜇F
8×8
8 + 8 = 4𝜇F

2𝜇F + 4𝜇F = 6𝜇F 

C1

C2

C3

C4

1𝜇F

3𝜇F
6𝜇F

2𝜇F

4𝜇F

8𝜇F

4𝜇F4𝜇F

8𝜇F8𝜇F

2𝜇F

4𝜇F

Problems: 



8. In this figure, C1 = 6𝜇F, C2 = 2𝜇F and V = 12V. Calculate:
i. Their equivalent capacitance.

Ceq = C1 + C2 = 6 + 2 = 8 𝜇F

ii. The charge on capacitor C2.
q2, = C2 V = 2 × 10/H × 12 = 24 × 10-6 C

C1 C2

q1 q2

V=12V

Problems: 



Energy Stored in an Electric Field 
� To charge a capacitor, work must be done by an external agent (battery)

� We visualize the work required to charge a capacitor as being stored in the form of electric potential 
energy U in the electric field between the capacitor plates

� To calculate the energy stored in capacitor: 
� Suppose that, at a given instant, a charge q’ has been transferred from one plate of a capacitor to the other
� The potential difference V’ between the plates at that instant will be q’ /C
� If an extra increment of charge dq’ is then transferred, the increment of work required will be 

� This work is stored as potential energy U given by:

or or 
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Additional examples, video, and practice available at WileyPLUS

thus q2 ! q0 " q1.

We can now rewrite the second equilibrium equation as
q1

C1
!

q0 " q1

C2
.

Solving this for q1 and substituting given data, we find

q1 ! 6.35 mC. (Answer)

The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC. (Answer)

25-5 Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor. Starting with an
uncharged capacitor, for example, imagine that—using “magic tweezers”—you
remove electrons from one plate and transfer them one at a time to the other
plate. The electric field that builds up in the space between the plates has a direc-
tion that tends to oppose further transfer. Thus, as charge accumulates on the
capacitor plates, you have to do increasingly larger amounts of work to transfer
additional electrons. In practice, this work is done not by “magic tweezers” but by
a battery, at the expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the
form of electric potential energy U in the electric field between the plates. You
can recover this energy at will, by discharging the capacitor in a circuit, just as you
can recover the potential energy stored in a stretched bow by releasing the bow-
string to transfer the energy to the kinetic energy of an arrow.

Suppose that, at a given instant, a charge q# has been transferred from one
plate of a capacitor to the other.The potential difference V# between the plates at
that instant will be q#/C. If an extra increment of charge dq# is then transferred,
the increment of work required will be, from Eq. 24-7,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-plate

capacitors that are identical except that capacitor 1 has twice the plate separation
of capacitor 2. Then capacitor 1 has twice the volume between its plates and also,
from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-4 tells us that if both
capacitors have the same charge q, the electric fields between their plates are iden-
tical.And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of
capacitor 2. Thus, of two otherwise identical capacitors with the same charge and
same electric field, the one with twice the volume between its plates has twice the
stored potential energy. Arguments like this tend to verify our earlier assumption:
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thus q2 ! q0 " q1.

We can now rewrite the second equilibrium equation as
q1

C1
!

q0 " q1

C2
.

Solving this for q1 and substituting given data, we find

q1 ! 6.35 mC. (Answer)

The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC. (Answer)

25-5 Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor. Starting with an
uncharged capacitor, for example, imagine that—using “magic tweezers”—you
remove electrons from one plate and transfer them one at a time to the other
plate. The electric field that builds up in the space between the plates has a direc-
tion that tends to oppose further transfer. Thus, as charge accumulates on the
capacitor plates, you have to do increasingly larger amounts of work to transfer
additional electrons. In practice, this work is done not by “magic tweezers” but by
a battery, at the expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the
form of electric potential energy U in the electric field between the plates. You
can recover this energy at will, by discharging the capacitor in a circuit, just as you
can recover the potential energy stored in a stretched bow by releasing the bow-
string to transfer the energy to the kinetic energy of an arrow.

Suppose that, at a given instant, a charge q# has been transferred from one
plate of a capacitor to the other.The potential difference V# between the plates at
that instant will be q#/C. If an extra increment of charge dq# is then transferred,
the increment of work required will be, from Eq. 24-7,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-plate

capacitors that are identical except that capacitor 1 has twice the plate separation
of capacitor 2. Then capacitor 1 has twice the volume between its plates and also,
from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-4 tells us that if both
capacitors have the same charge q, the electric fields between their plates are iden-
tical.And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of
capacitor 2. Thus, of two otherwise identical capacitors with the same charge and
same electric field, the one with twice the volume between its plates has twice the
stored potential energy. Arguments like this tend to verify our earlier assumption:
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The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC. (Answer)
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uncharged capacitor, for example, imagine that—using “magic tweezers”—you
remove electrons from one plate and transfer them one at a time to the other
plate. The electric field that builds up in the space between the plates has a direc-
tion that tends to oppose further transfer. Thus, as charge accumulates on the
capacitor plates, you have to do increasingly larger amounts of work to transfer
additional electrons. In practice, this work is done not by “magic tweezers” but by
a battery, at the expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the
form of electric potential energy U in the electric field between the plates. You
can recover this energy at will, by discharging the capacitor in a circuit, just as you
can recover the potential energy stored in a stretched bow by releasing the bow-
string to transfer the energy to the kinetic energy of an arrow.

Suppose that, at a given instant, a charge q# has been transferred from one
plate of a capacitor to the other.The potential difference V# between the plates at
that instant will be q#/C. If an extra increment of charge dq# is then transferred,
the increment of work required will be, from Eq. 24-7,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-plate

capacitors that are identical except that capacitor 1 has twice the plate separation
of capacitor 2. Then capacitor 1 has twice the volume between its plates and also,
from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-4 tells us that if both
capacitors have the same charge q, the electric fields between their plates are iden-
tical.And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of
capacitor 2. Thus, of two otherwise identical capacitors with the same charge and
same electric field, the one with twice the volume between its plates has twice the
stored potential energy. Arguments like this tend to verify our earlier assumption:
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thus q2 ! q0 " q1.

We can now rewrite the second equilibrium equation as
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Solving this for q1 and substituting given data, we find

q1 ! 6.35 mC. (Answer)

The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC. (Answer)

25-5 Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor. Starting with an
uncharged capacitor, for example, imagine that—using “magic tweezers”—you
remove electrons from one plate and transfer them one at a time to the other
plate. The electric field that builds up in the space between the plates has a direc-
tion that tends to oppose further transfer. Thus, as charge accumulates on the
capacitor plates, you have to do increasingly larger amounts of work to transfer
additional electrons. In practice, this work is done not by “magic tweezers” but by
a battery, at the expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the
form of electric potential energy U in the electric field between the plates. You
can recover this energy at will, by discharging the capacitor in a circuit, just as you
can recover the potential energy stored in a stretched bow by releasing the bow-
string to transfer the energy to the kinetic energy of an arrow.

Suppose that, at a given instant, a charge q# has been transferred from one
plate of a capacitor to the other.The potential difference V# between the plates at
that instant will be q#/C. If an extra increment of charge dq# is then transferred,
the increment of work required will be, from Eq. 24-7,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-plate

capacitors that are identical except that capacitor 1 has twice the plate separation
of capacitor 2. Then capacitor 1 has twice the volume between its plates and also,
from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-4 tells us that if both
capacitors have the same charge q, the electric fields between their plates are iden-
tical.And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of
capacitor 2. Thus, of two otherwise identical capacitors with the same charge and
same electric field, the one with twice the volume between its plates has twice the
stored potential energy. Arguments like this tend to verify our earlier assumption:
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Explosions in Airborne Dust
As we discussed in Section 24-12, making contact with certain materials, such as
clothing, carpets, and even playground slides, can leave you with a significant
electrical potential.You might become painfully aware of that potential if a spark
leaps between you and a grounded object, such as a faucet. In many industries in-
volving the production and transport of powder, such as in the cosmetic and food
industries, such a spark can be disastrous. Although the powder in bulk may not
burn at all, when individual powder grains are airborne and thus surrounded by
oxygen, they can burn so fiercely that a cloud of the grains burns as an explosion.
Safety engineers cannot eliminate all possible sources of sparks in the powder in-
dustries. Instead, they attempt to keep the amount of energy available in the
sparks below the threshold value Ut (! 150 mJ) typically required to ignite 
airborne grains.

Suppose a person becomes charged by contact with various surfaces as he
walks through an airborne powder.We can roughly model the person as a spherical
capacitor of radius R ! 1.8 m. From Eq. 25-18 and Eq. 25-22(C ! 4"#0R)

The potential energy of a charged capacitor may be viewed as being stored in the
electric field between its plates.

, we see that the energy $f the capacitor is

From this we see that the threshold energy corresponds to a potential of 

! 3.9 %  104 V.

Safety engineers attempt to keep the potential of the personnel below this level
by “bleeding” off the charge through, say, a conducting floor.

Energy Density
In a parallel-plate capacitor, neglecting fringing, the electric field has the same
value at all points between the plates. Thus, the energy density u—that is, the
potential energy per unit volume between the plates—should also be uniform.
We can find u by dividing the total potential energy by the volume Ad of the
space between the plates. Using Eq. 25-22, we obtain

(25-23)

With Eq. 25-9 (C ! #0A/d), this result becomes

(25-24)

However, from Eq. 24-42 (E ! &'V/'s), V/d equals the electric field magnitude
E; so

(energy density). (25-25)

Although we derived this result for the special case of an electric field of a
parallel-plate capacitor, it holds generally, whatever may be the source of
the electric field. If an electric field exists at any point in space, we can think
of that point as a site of electric potential energy with a density (amount per
unit volume) given by Eq. 25-25.

E
:

u ! 1
2 #0E 2

u ! 1
2 #0 " V

d #2

.

u !
U

Ad
!

CV 2

2Ad
.

V ! A 2Ut

4"#0R
! A 2(150 % 10&3 J)

4"(8.85 % 10&12 C2/N (m2)(1.8 m)

U ! 1
2(4"#0R)V2.

(U ! 1
2CV2)

halliday_c25_656-681v2.qxd  23-11-2009  14:32  Page 668

66725-5 E N E RGY STOR E D I N AN E LECTR IC F I E LD
PART 3

HALLIDAY REVISED

Additional examples, video, and practice available at WileyPLUS

thus q2 ! q0 " q1.

We can now rewrite the second equilibrium equation as
q1

C1
!

q0 " q1

C2
.

Solving this for q1 and substituting given data, we find

q1 ! 6.35 mC. (Answer)

The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC. (Answer)

25-5 Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor. Starting with an
uncharged capacitor, for example, imagine that—using “magic tweezers”—you
remove electrons from one plate and transfer them one at a time to the other
plate. The electric field that builds up in the space between the plates has a direc-
tion that tends to oppose further transfer. Thus, as charge accumulates on the
capacitor plates, you have to do increasingly larger amounts of work to transfer
additional electrons. In practice, this work is done not by “magic tweezers” but by
a battery, at the expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the
form of electric potential energy U in the electric field between the plates. You
can recover this energy at will, by discharging the capacitor in a circuit, just as you
can recover the potential energy stored in a stretched bow by releasing the bow-
string to transfer the energy to the kinetic energy of an arrow.

Suppose that, at a given instant, a charge q# has been transferred from one
plate of a capacitor to the other.The potential difference V# between the plates at
that instant will be q#/C. If an extra increment of charge dq# is then transferred,
the increment of work required will be, from Eq. 24-7,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-plate

capacitors that are identical except that capacitor 1 has twice the plate separation
of capacitor 2. Then capacitor 1 has twice the volume between its plates and also,
from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-4 tells us that if both
capacitors have the same charge q, the electric fields between their plates are iden-
tical.And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of
capacitor 2. Thus, of two otherwise identical capacitors with the same charge and
same electric field, the one with twice the volume between its plates has twice the
stored potential energy. Arguments like this tend to verify our earlier assumption:
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1
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thus q2 ! q0 " q1.

We can now rewrite the second equilibrium equation as
q1

C1
!

q0 " q1

C2
.

Solving this for q1 and substituting given data, we find

q1 ! 6.35 mC. (Answer)

The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC. (Answer)

25-5 Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor. Starting with an
uncharged capacitor, for example, imagine that—using “magic tweezers”—you
remove electrons from one plate and transfer them one at a time to the other
plate. The electric field that builds up in the space between the plates has a direc-
tion that tends to oppose further transfer. Thus, as charge accumulates on the
capacitor plates, you have to do increasingly larger amounts of work to transfer
additional electrons. In practice, this work is done not by “magic tweezers” but by
a battery, at the expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the
form of electric potential energy U in the electric field between the plates. You
can recover this energy at will, by discharging the capacitor in a circuit, just as you
can recover the potential energy stored in a stretched bow by releasing the bow-
string to transfer the energy to the kinetic energy of an arrow.

Suppose that, at a given instant, a charge q# has been transferred from one
plate of a capacitor to the other.The potential difference V# between the plates at
that instant will be q#/C. If an extra increment of charge dq# is then transferred,
the increment of work required will be, from Eq. 24-7,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-plate

capacitors that are identical except that capacitor 1 has twice the plate separation
of capacitor 2. Then capacitor 1 has twice the volume between its plates and also,
from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-4 tells us that if both
capacitors have the same charge q, the electric fields between their plates are iden-
tical.And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of
capacitor 2. Thus, of two otherwise identical capacitors with the same charge and
same electric field, the one with twice the volume between its plates has twice the
stored potential energy. Arguments like this tend to verify our earlier assumption:
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thusq2 ! q0"q1.

We can now rewrite the second equilibrium equation as
q1

C1
!

q0"q1

C2
.

Solving this for q1and substituting given data,we find

q1 ! 6.35 mC.(Answer)

The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC.(Answer)

25-5Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor.Starting with an
uncharged capacitor,for example,imagine that—using “magic tweezers”—you
remove electrons from one plate and transfer them one at a time to the other
plate.The electric field that builds up in the space between the plates has a direc-
tion that tends to oppose further transfer.Thus,as charge accumulates on the
capacitor plates,you have to do increasingly larger amounts of work to transfer
additional electrons.In practice,this work is done not by “magic tweezers”but by
a battery,at the expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the
form of electric potential energy Uin the electric field between the plates.You
can recover this energy at will,by discharging the capacitor in a circuit,just as you
can recover the potential energy stored in a stretched bow by releasing the bow-
string to transfer the energy to the kinetic energy of an arrow.

Suppose that,at a given instant,a charge q#has been transferred from one
plate of a capacitor to the other.The potential difference V#between the plates at
that instant will be q#/C.If an extra increment of charge dq#is then transferred,
the increment of work required will be,from Eq.24-7,

The work required to bring the total capacitor charge up to a final value qis

This work is stored as potential energy Uin the capacitor,so that

(potential energy).(25-21)

From Eq.25-1,we can also write this as

(potential energy).(25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage,consider two parallel-plate

capacitors that are identical except that capacitor 1 has twice the plate separation
of capacitor 2.Then capacitor 1 has twice the volume between its plates and also,
from Eq.25-9,half the capacitance of capacitor 2.Equation 25-4 tells us that if both
capacitors have the same charge q,the electric fields between their plates are iden-
tical.And Eq.25-21 tells us that capacitor 1 has twice the stored potential energy of
capacitor 2.Thus,of two otherwise identical capacitors with the same charge and
same electric field,the one with twice the volume between its plates has twice the
stored potential energy.Arguments like this tend to verify our earlier assumption:
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thus q2 ! q0 " q1.

We can now rewrite the second equilibrium equation as
q1

C1
!

q0 " q1

C2
.

Solving this for q1 and substituting given data, we find

q1 ! 6.35 mC. (Answer)

The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC. (Answer)

25-5 Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor. Starting with an
uncharged capacitor, for example, imagine that—using “magic tweezers”—you
remove electrons from one plate and transfer them one at a time to the other
plate. The electric field that builds up in the space between the plates has a direc-
tion that tends to oppose further transfer. Thus, as charge accumulates on the
capacitor plates, you have to do increasingly larger amounts of work to transfer
additional electrons. In practice, this work is done not by “magic tweezers” but by
a battery, at the expense of its store of chemical energy.

We visualize the work required to charge a capacitor as being stored in the
form of electric potential energy U in the electric field between the plates. You
can recover this energy at will, by discharging the capacitor in a circuit, just as you
can recover the potential energy stored in a stretched bow by releasing the bow-
string to transfer the energy to the kinetic energy of an arrow.

Suppose that, at a given instant, a charge q# has been transferred from one
plate of a capacitor to the other.The potential difference V# between the plates at
that instant will be q#/C. If an extra increment of charge dq# is then transferred,
the increment of work required will be, from Eq. 24-7,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-plate

capacitors that are identical except that capacitor 1 has twice the plate separation
of capacitor 2. Then capacitor 1 has twice the volume between its plates and also,
from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-4 tells us that if both
capacitors have the same charge q, the electric fields between their plates are iden-
tical.And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of
capacitor 2. Thus, of two otherwise identical capacitors with the same charge and
same electric field, the one with twice the volume between its plates has twice the
stored potential energy. Arguments like this tend to verify our earlier assumption:
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9. An isolated sphere is completely charged to 60pC when a voltage of 12V is applied. Calculate 
i. The radius of the sphere

𝑞 = 𝐶𝑉 ⟹ 𝐶 = F
G
= H&×3&IWX

34
= 5×10/34F

𝐶 = 4𝜋𝜀&𝑅 ⟹ 𝑅 =
𝐶

4𝜋𝜀&
=

5×10/34

4 3.14 8.85×10/34 = 4.5𝑐𝑚

ii. The energy stored within the sphere

𝑈 = 3
4
𝑞𝑉 = 3

4
×12×60×10/34 = 360×10/34J

Problems: 
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Capacitor; Capacitance A capacitor consists of two isolated
conductors (the plates) with charges !q and "q. Its capacitance C
is defined from

q # CV, (25-1)

where V is the potential difference between the plates.

Determining Capacitance We generally determine the
capacitance of a particular capacitor configuration by (1) assuming a
charge q to have been placed on the plates, (2) finding the electric field

due to this charge, (3) evaluating the potential difference V, and (4)
calculating C from Eq.25-1.Some specific results are the following:

A parallel-plate capacitor with flat parallel plates of area A
and spacing d has capacitance

(25-9)

A cylindrical capacitor (two long coaxial cylinders) of length L
and radii a and b has capacitance

(25-14)

A spherical capacitor with concentric spherical plates of radii a
and b has capacitance

(25-17)

An isolated sphere of radius R has capacitance

C # 4p$0R. (25-18)

Capacitors in Parallel and in Series The equivalent
capacitances Ceq of combinations of individual capacitors con-
nected in parallel and in series can be found from

(n capacitors in parallel) (25-19)

and (n capacitors in series). (25-20)
1

Ceq
 # !

n

j#1

1
Cj

Ceq # !
n

j #  1
 Cj

C # 4%$0 
ab

b " a
.

C # 2%$0 
L

ln(b/a)
.

C #
$0A

d
.

E
:

1 Figure 25-18 shows plots of
charge versus potential difference
for three parallel-plate capacitors
that have the plate areas and separa-
tions given in the table. Which plot
goes with which capacitor?

3 (a) In Fig. 25-19a, are capacitors 1 and 3 in series? (b) In the same
figure, are capacitors 1 and 2 in parallel? (c) Rank the equivalent ca-
pacitances of the four circuits shown in Fig.25-19,greatest first.

a 

b 
c 

V 

q

Fig. 25-18 Question 1.

Capacitor Area Separation

1 A d
2 2A d
3 A 2d

Equivalent capacitances can be used to calculate the capacitances
of more complicated series–parallel combinations.

Potential Energy and Energy Density The electric poten-
tial energy U of a charged capacitor,

(25-21, 25-22)

is equal to the work required to charge the capacitor. This energy
can be associated with the capacitor’s electric field By extension
we can associate stored energy with any electric field. In vacuum,
the energy density u, or potential energy per unit volume, within an
electric field of magnitude E is given by

(25-25)

Capacitance with a Dielectric If the space between the
plates of a capacitor is completely filled with a dielectric material, the
capacitance C is increased by a factor k, called the dielectric constant,
which is characteristic of the material. In a region that is completely
filled by a dielectric, all electrostatic equations containing $0 must be
modified by replacing $0 with k$0.

The effects of adding a dielectric can be understood physically in
terms of the action of an electric field on the permanent or induced
electric dipoles in the dielectric slab.The result is the formation of in-
duced charges on the surfaces of the dielectric, which results in a
weakening of the field within the dielectric for a given amount of free
charge on the plates.

Gauss’ Law with a Dielectric When a dielectric is present,
Gauss’ law may be generalized to

(25-36)

Here q is the free charge; any induced surface charge is accounted for
by including the dielectric constant k inside the integral.
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2 What is Ceq of three capacitors, each of capacitance C, if they
are connected to a battery (a) in series with one another and (b) in
parallel? (c) In which arrangement is there more charge on the
equivalent capacitance?
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4 Figure 25-20 shows three circuits, each consisting of a switch and
two capacitors, initially charged as indicated (top plate positive).
After the switches have been closed, in which circuit (if any) will
the charge on the left-hand capacitor (a) increase, (b) decrease, and
(c) remain the same?

8 Figure 25-22 shows an open
switch, a battery of potential differ-
ence V, a current-measuring meter
A, and three identical uncharged
capacitors of capacitance C. When
the switch is closed and the circuit
reaches equilibrium, what are (a)
the potential difference across each capacitor and (b) the charge
on the left plate of each capacitor? (c) During charging, what net
charge passes through the meter?

9 A parallel-plate capacitor is connected to a battery of electric
potential difference V. If the plate separation is decreased, do the
following quantities increase, decrease, or remain the same: (a) the
capacitor’s capacitance, (b) the potential difference across the ca-
pacitor, (c) the charge on the capacitor, (d) the energy stored by
the capacitor, (e) the magnitude of the electric field between the
plates, and (f) the energy density of that electric field?

10 When a dielectric slab is inserted
between the plates of one of the two
identical capacitors in Fig. 25-23, do the
following properties of that capacitor in-
crease, decrease, or remain the same: (a)
capacitance, (b) charge, (c) potential dif-
ference, and (d) potential energy? (e)
How about the same properties of the
other capacitor?

11 You are to connect capacitances C1 and C2, with C1 ! C2, to a
battery, first individually, then in series, and then in parallel. Rank
those arrangements according to the amount of charge stored, greatest
first.

Fig. 25-20 Question 4.
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5 Initially, a single capacitance C1 is wired to a battery. Then ca-
pacitance C2 is added in parallel. Are (a) the potential difference
across C1 and (b) the charge q1 on C1 now more than, less than, or
the same as previously? (c) Is the equivalent capacitance C12 of C1

and C2 more than, less than, or equal to C1? (d) Is the charge stored
on C1 and C2 together more than, less than, or equal to the charge
stored previously on C1?

6 Repeat Question 5 for C2 added in series rather than in parallel.

7 For each circuit in Fig. 25-21, are the capacitors connected in
series, in parallel, or in neither mode?

A

C C

V

C
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Fig. 25-22 Question 8.

B

κ

+
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C

C

Fig. 23-19
Question 10.

Fig. 25-21 Question 7.
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(a) (b) (c)

sec. 25-2 Capacitance
•1 The two metal objects in Fig.
25-24 have net charges of "70 pC
and #70 pC, which result in a 20 V
potential difference between them.
(a) What is the capacitance of the system? (b) If the charges are
changed to "200 pC and #200 pC, what does the capacitance be-
come? (c) What does the potential
difference become?

•2 The capacitor in Fig. 25-25 has a
capacitance of 25 mF and is initially
uncharged. The battery provides a
potential difference of 120 V. After
switch S is closed, how much charge
will pass through it?

sec. 25-3 Calculating the Capacitance
•3 A parallel-plate capacitor has circular plates of 8.20 cm
radius and 1.30 mm separation. (a) Calculate the capacitance. (b)
Find the charge for a potential difference of 120 V.

SSM

•4 The plates of a spherical capacitor have radii 38.0 mm and 40.0
mm. (a) Calculate the capacitance. (b) What must be the plate area
of a parallel-plate capacitor with the same plate separation and
capacitance?

•5 What is the capacitance of a drop that results when two
mercury spheres, each of radius R $ 2.00 mm, merge?

•6 You have two flat metal plates, each of area 1.00 m2, with which to
construct a parallel-plate capacitor. (a) If the capacitance of the device
is to be 1.00 F, what must be the separa-
tion between the plates? (b) Could this
capacitor actually be constructed?

•7 If an uncharged parallel-plate
capacitor (capacitance C) is connected
to a battery, one plate becomes nega-
tively charged as electrons move to the
plate face (area A). In Fig. 25-26, the
depth d from which the electrons come
in the plate in a particular capacitor is
plotted against a range of values for the

Fig. 25-24 Problem 1.
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Fig. 25-26 Problem 7.
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4 Figure 25-20 shows three circuits, each consisting of a switch and
two capacitors, initially charged as indicated (top plate positive).
After the switches have been closed, in which circuit (if any) will
the charge on the left-hand capacitor (a) increase, (b) decrease, and
(c) remain the same?

8 Figure 25-22 shows an open
switch, a battery of potential differ-
ence V, a current-measuring meter
A, and three identical uncharged
capacitors of capacitance C. When
the switch is closed and the circuit
reaches equilibrium, what are (a)
the potential difference across each capacitor and (b) the charge
on the left plate of each capacitor? (c) During charging, what net
charge passes through the meter?

9 A parallel-plate capacitor is connected to a battery of electric
potential difference V. If the plate separation is decreased, do the
following quantities increase, decrease, or remain the same: (a) the
capacitor’s capacitance, (b) the potential difference across the ca-
pacitor, (c) the charge on the capacitor, (d) the energy stored by
the capacitor, (e) the magnitude of the electric field between the
plates, and (f) the energy density of that electric field?

10 When a dielectric slab is inserted
between the plates of one of the two
identical capacitors in Fig. 25-23, do the
following properties of that capacitor in-
crease, decrease, or remain the same: (a)
capacitance, (b) charge, (c) potential dif-
ference, and (d) potential energy? (e)
How about the same properties of the
other capacitor?

11 You are to connect capacitances C1 and C2, with C1 ! C2, to a
battery, first individually, then in series, and then in parallel. Rank
those arrangements according to the amount of charge stored, greatest
first.

Fig. 25-20 Question 4.
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5 Initially, a single capacitance C1 is wired to a battery. Then ca-
pacitance C2 is added in parallel. Are (a) the potential difference
across C1 and (b) the charge q1 on C1 now more than, less than, or
the same as previously? (c) Is the equivalent capacitance C12 of C1

and C2 more than, less than, or equal to C1? (d) Is the charge stored
on C1 and C2 together more than, less than, or equal to the charge
stored previously on C1?

6 Repeat Question 5 for C2 added in series rather than in parallel.

7 For each circuit in Fig. 25-21, are the capacitors connected in
series, in parallel, or in neither mode?
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Fig. 25-22 Question 8.
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Question 10.
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sec. 25-2 Capacitance
•1 The two metal objects in Fig.
25-24 have net charges of "70 pC
and #70 pC, which result in a 20 V
potential difference between them.
(a) What is the capacitance of the system? (b) If the charges are
changed to "200 pC and #200 pC, what does the capacitance be-
come? (c) What does the potential
difference become?

•2 The capacitor in Fig. 25-25 has a
capacitance of 25 mF and is initially
uncharged. The battery provides a
potential difference of 120 V. After
switch S is closed, how much charge
will pass through it?

sec. 25-3 Calculating the Capacitance
•3 A parallel-plate capacitor has circular plates of 8.20 cm
radius and 1.30 mm separation. (a) Calculate the capacitance. (b)
Find the charge for a potential difference of 120 V.

SSM

•4 The plates of a spherical capacitor have radii 38.0 mm and 40.0
mm. (a) Calculate the capacitance. (b) What must be the plate area
of a parallel-plate capacitor with the same plate separation and
capacitance?

•5 What is the capacitance of a drop that results when two
mercury spheres, each of radius R $ 2.00 mm, merge?

•6 You have two flat metal plates, each of area 1.00 m2, with which to
construct a parallel-plate capacitor. (a) If the capacitance of the device
is to be 1.00 F, what must be the separa-
tion between the plates? (b) Could this
capacitor actually be constructed?

•7 If an uncharged parallel-plate
capacitor (capacitance C) is connected
to a battery, one plate becomes nega-
tively charged as electrons move to the
plate face (area A). In Fig. 25-26, the
depth d from which the electrons come
in the plate in a particular capacitor is
plotted against a range of values for the
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a, series; b, parallel; c, parallel parallel, C1 alone, C2 alone, series
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4 Figure 25-20 shows three circuits, each consisting of a switch and
two capacitors, initially charged as indicated (top plate positive).
After the switches have been closed, in which circuit (if any) will
the charge on the left-hand capacitor (a) increase, (b) decrease, and
(c) remain the same?

8 Figure 25-22 shows an open
switch, a battery of potential differ-
ence V, a current-measuring meter
A, and three identical uncharged
capacitors of capacitance C. When
the switch is closed and the circuit
reaches equilibrium, what are (a)
the potential difference across each capacitor and (b) the charge
on the left plate of each capacitor? (c) During charging, what net
charge passes through the meter?

9 A parallel-plate capacitor is connected to a battery of electric
potential difference V. If the plate separation is decreased, do the
following quantities increase, decrease, or remain the same: (a) the
capacitor’s capacitance, (b) the potential difference across the ca-
pacitor, (c) the charge on the capacitor, (d) the energy stored by
the capacitor, (e) the magnitude of the electric field between the
plates, and (f) the energy density of that electric field?

10 When a dielectric slab is inserted
between the plates of one of the two
identical capacitors in Fig. 25-23, do the
following properties of that capacitor in-
crease, decrease, or remain the same: (a)
capacitance, (b) charge, (c) potential dif-
ference, and (d) potential energy? (e)
How about the same properties of the
other capacitor?

11 You are to connect capacitances C1 and C2, with C1 ! C2, to a
battery, first individually, then in series, and then in parallel. Rank
those arrangements according to the amount of charge stored, greatest
first.

Fig. 25-20 Question 4.
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5 Initially, a single capacitance C1 is wired to a battery. Then ca-
pacitance C2 is added in parallel. Are (a) the potential difference
across C1 and (b) the charge q1 on C1 now more than, less than, or
the same as previously? (c) Is the equivalent capacitance C12 of C1

and C2 more than, less than, or equal to C1? (d) Is the charge stored
on C1 and C2 together more than, less than, or equal to the charge
stored previously on C1?

6 Repeat Question 5 for C2 added in series rather than in parallel.

7 For each circuit in Fig. 25-21, are the capacitors connected in
series, in parallel, or in neither mode?

A

C C

V

C

+ –

Fig. 25-22 Question 8.
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Fig. 25-21 Question 7.
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(a) (b) (c)

sec. 25-2 Capacitance
•1 The two metal objects in Fig.
25-24 have net charges of "70 pC
and #70 pC, which result in a 20 V
potential difference between them.
(a) What is the capacitance of the system? (b) If the charges are
changed to "200 pC and #200 pC, what does the capacitance be-
come? (c) What does the potential
difference become?

•2 The capacitor in Fig. 25-25 has a
capacitance of 25 mF and is initially
uncharged. The battery provides a
potential difference of 120 V. After
switch S is closed, how much charge
will pass through it?

sec. 25-3 Calculating the Capacitance
•3 A parallel-plate capacitor has circular plates of 8.20 cm
radius and 1.30 mm separation. (a) Calculate the capacitance. (b)
Find the charge for a potential difference of 120 V.

SSM

•4 The plates of a spherical capacitor have radii 38.0 mm and 40.0
mm. (a) Calculate the capacitance. (b) What must be the plate area
of a parallel-plate capacitor with the same plate separation and
capacitance?

•5 What is the capacitance of a drop that results when two
mercury spheres, each of radius R $ 2.00 mm, merge?

•6 You have two flat metal plates, each of area 1.00 m2, with which to
construct a parallel-plate capacitor. (a) If the capacitance of the device
is to be 1.00 F, what must be the separa-
tion between the plates? (b) Could this
capacitor actually be constructed?

•7 If an uncharged parallel-plate
capacitor (capacitance C) is connected
to a battery, one plate becomes nega-
tively charged as electrons move to the
plate face (area A). In Fig. 25-26, the
depth d from which the electrons come
in the plate in a particular capacitor is
plotted against a range of values for the
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4 Figure 25-20 shows three circuits, each consisting of a switch and
two capacitors, initially charged as indicated (top plate positive).
After the switches have been closed, in which circuit (if any) will
the charge on the left-hand capacitor (a) increase, (b) decrease, and
(c) remain the same?

8 Figure 25-22 shows an open
switch, a battery of potential differ-
ence V, a current-measuring meter
A, and three identical uncharged
capacitors of capacitance C. When
the switch is closed and the circuit
reaches equilibrium, what are (a)
the potential difference across each capacitor and (b) the charge
on the left plate of each capacitor? (c) During charging, what net
charge passes through the meter?

9 A parallel-plate capacitor is connected to a battery of electric
potential difference V. If the plate separation is decreased, do the
following quantities increase, decrease, or remain the same: (a) the
capacitor’s capacitance, (b) the potential difference across the ca-
pacitor, (c) the charge on the capacitor, (d) the energy stored by
the capacitor, (e) the magnitude of the electric field between the
plates, and (f) the energy density of that electric field?

10 When a dielectric slab is inserted
between the plates of one of the two
identical capacitors in Fig. 25-23, do the
following properties of that capacitor in-
crease, decrease, or remain the same: (a)
capacitance, (b) charge, (c) potential dif-
ference, and (d) potential energy? (e)
How about the same properties of the
other capacitor?

11 You are to connect capacitances C1 and C2, with C1 ! C2, to a
battery, first individually, then in series, and then in parallel. Rank
those arrangements according to the amount of charge stored, greatest
first.

Fig. 25-20 Question 4.
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5 Initially, a single capacitance C1 is wired to a battery. Then ca-
pacitance C2 is added in parallel. Are (a) the potential difference
across C1 and (b) the charge q1 on C1 now more than, less than, or
the same as previously? (c) Is the equivalent capacitance C12 of C1

and C2 more than, less than, or equal to C1? (d) Is the charge stored
on C1 and C2 together more than, less than, or equal to the charge
stored previously on C1?

6 Repeat Question 5 for C2 added in series rather than in parallel.

7 For each circuit in Fig. 25-21, are the capacitors connected in
series, in parallel, or in neither mode?
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sec. 25-2 Capacitance
•1 The two metal objects in Fig.
25-24 have net charges of "70 pC
and #70 pC, which result in a 20 V
potential difference between them.
(a) What is the capacitance of the system? (b) If the charges are
changed to "200 pC and #200 pC, what does the capacitance be-
come? (c) What does the potential
difference become?

•2 The capacitor in Fig. 25-25 has a
capacitance of 25 mF and is initially
uncharged. The battery provides a
potential difference of 120 V. After
switch S is closed, how much charge
will pass through it?

sec. 25-3 Calculating the Capacitance
•3 A parallel-plate capacitor has circular plates of 8.20 cm
radius and 1.30 mm separation. (a) Calculate the capacitance. (b)
Find the charge for a potential difference of 120 V.

SSM

•4 The plates of a spherical capacitor have radii 38.0 mm and 40.0
mm. (a) Calculate the capacitance. (b) What must be the plate area
of a parallel-plate capacitor with the same plate separation and
capacitance?

•5 What is the capacitance of a drop that results when two
mercury spheres, each of radius R $ 2.00 mm, merge?

•6 You have two flat metal plates, each of area 1.00 m2, with which to
construct a parallel-plate capacitor. (a) If the capacitance of the device
is to be 1.00 F, what must be the separa-
tion between the plates? (b) Could this
capacitor actually be constructed?

•7 If an uncharged parallel-plate
capacitor (capacitance C) is connected
to a battery, one plate becomes nega-
tively charged as electrons move to the
plate face (area A). In Fig. 25-26, the
depth d from which the electrons come
in the plate in a particular capacitor is
plotted against a range of values for the
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potential difference V of the battery. The density of conduction elec-
trons in the copper plates is 8.49 ! 1028 electrons/m3. The vertical
scale is set by ds " 1.00 pm, and the horizontal scale is set by Vs " 20.0
V.What is the ratio C/A?

sec. 25-4 Capacitors in Parallel and in Series
•8 How many 1.00 mF capacitors must be connected in parallel to
store a charge of 1.00 C with a potential of 110 V across the 
capacitors?

•9 Each of the uncharged capaci-
tors in Fig. 25-27 has a capacitance
of 25.0 mF. A potential difference
of V " 4200 V is established when
the switch is closed. How many
coulombs of charge then pass
through meter A?

•10 In Fig. 25-28, find the equivalent capacitance of the combination.
Assume that C1 is 10.0 mF,C2 is 5.00 mF,and C3 is 4.00 mF.

are (c) V1 and (d) q1 of capacitor 1, (e) V2 and (f) q2 of capacitor 2,
and (g) V3 and (h) q3 of capacitor 3?

V

A

C C C

Fig. 25-27 Problem 9.

Fig. 25-28 Problems 10 and 34.

V

C1

C3

C2

Fig. 25-31 Problem 15.
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3q 
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 C
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µ

Fig. 25-32 Problem 16.

••17 In Fig. 25-29, a potential difference of V " 100.0 V is ap-
plied across a capacitor arrangement with capacitances C1 " 10.0 mF,
C2 " 5.00 mF, and C3 " 4.00 mF. If capacitor 3 undergoes electrical
breakdown so that it becomes equivalent to conducting wire, what is
the increase in (a) the charge on capacitor 1 and (b) the potential dif-
ference across capacitor 1?

••18 Figure 25-33 shows a circuit section of four air-filled
capacitors that is connected to a larger circuit.The graph below the
section shows the electric potential V(x) as a function of position x

•11 In Fig. 25-29, find the
equivalent capacitance of the
combination. Assume that C1 "
10.0 mF, C2 " 5.00 mF, and C3 "
4.00 mF.

••12 Two parallel-plate capaci-
tors, 6.0 mF each, are connected in
parallel to a 10 V battery. One of
the capacitors is then squeezed so
that its plate separation is 50.0% of
its initial value. Because of the squeezing, (a) how much additional
charge is transferred to the capacitors by the battery and (b) what
is the increase in the total charge stored on the capacitors?

••13 A 100 pF capacitor is charged to a potential
difference of 50 V, and the charging battery is disconnected. The
capacitor is then connected in parallel with a second (initially
uncharged) capacitor. If the potential difference across the first
capacitor drops to 35 V, what is
the capacitance of this second ca-
pacitor?

••14 In Fig. 25-30, the battery has a
potential difference of V " 10.0 V
and the five capacitors each have a
capacitance of 10.0 mF. What is the
charge on (a) capacitor 1 and (b) ca-
pacitor 2?

••15 In Fig. 25-31, a 20.0 V battery is connected across

ILWSSM

ILW

V

C2

C3

C1

Fig. 25-29 Problems 11,
17, and 38.

Fig. 25-30 Problem 14.

C2

+
– V

C1

••16 Plot 1 in Fig. 25-32agives the charge q that can be stored on ca-
pacitor 1 versus the electric potential V set up across it. The vertical
scale is set by qs = 16.0 mC, and the horizontal scale is set by Vs = 2.0 V.
Plots 2 and 3 are similar plots for capacitors 2 and 3, respectively.
Figure 25-32b shows a circuit with those three capacitors and a 6.0 V
battery.What is the charge stored on capacitor 2 in that circuit?

Fig. 25-33 Problem 18.

12

x

x

4

1 2 3

2 V
5 V

V

V 
(V

)

capacitors of capacitances C1 " C6 " 3.00 mF and C3 " C5 "
2.00C2 " 2.00C4 " 4.00 mF. What are (a) the equivalent capac-
itance Ceq of the capacitors and (b) the charge stored by Ceq? What
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••20 Figure 25-35 shows a
variable “air gap” capacitor
for manual tuning. Alternate
plates are connected together;
one group of plates is fixed in
position, and the other group
is capable of rotation. Consider
a capacitor of n ! 8 plates of
alternating polarity, each plate
having area A ! 1.25 cm2 and
separated from adjacent plates by distance d ! 3.40 mm. What is
the maximum capacitance of the device?

••21 In Fig. 25-36, the capacitances are C1 ! 1.0 mF
and C2 ! 3.0 mF, and both capacitors
are charged to a potential difference
of V ! 100 V but with opposite po-
larity as shown. Switches S1 and S2

are now closed. (a) What is now the
potential difference between points
a and b? What now is the charge on
capacitor (b) 1 and (c) 2?

••22 In Fig. 25-37, V ! 10 V, C1 !
10 mF, and C2 ! C3 ! 20 mF. Switch S
is first thrown to the left side until ca-
pacitor 1 reaches equilibrium. Then
the switch is thrown to the right.
When equilibrium is again reached,
how much charge is on capacitor 1?

••23 The capacitors in Fig. 25-38 are
initially uncharged. The capacitances
are C1 ! 4.0 mF, C2 ! 8.0 mF, and C3

! 12 mF, and the battery’s potential
difference is V ! 12 V. When switch S
is closed, how many electrons travel
through (a) point a, (b) point b, (c)
point c, and (d) point d? In the figure,
do the electrons travel up or down through (e) point b and (f) point c?

••24 Figure 25-39 represents two air-filled cylindrical capacitors
connected in series across a battery with potential V ! 10 V.
Capacitor 1 has an inner plate radius of 5.0 mm, an outer plate radius
of 1.5 cm, and a length of 5.0 cm. Capacitor 2 has an inner plate radius
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along the lower part of the section, through capacitor 4. Similarly,
the graph above the section shows the electric potential V(x) as a
function of position x along the upper part of the section, through
capacitors 1, 2, and 3. Capacitor 3 has a capacitance of 0.80 mF.
What are the capacitances of (a) capacitor 1 and (b) capacitor 2?

••19 In Fig. 25-34, the battery has potential difference V !
9.0 V, C2 ! 3.0 mF, C4 ! 4.0 mF, and all the capacitors are initially
uncharged. When switch S is closed, a total charge of 12 mC passes
through point a and a total charge of 8.0 mC passes through point
b.What are (a) C1 and (b) C3?

of 2.5 mm, an outer plate radius of 1.0 cm,
and a length of 9.0 cm.The outer plate of ca-
pacitor 2 is a conducting organic membrane
that can be stretched, and the capacitor can
be inflated to increase the plate separation.
If the outer plate radius is increased to 2.5
cm by inflation, (a) how many electrons
move through point P and (b) do they move
toward or away from the battery?

••25 In Fig. 25-40, two parallel-plate ca-
pacitors (with air between the plates) are
connected to a battery. Capacitor 1 has a
plate area of 1.5 cm2 and an electric field
(between its plates) of magnitude 2000 V/m.
Capacitor 2 has a plate area of 0.70 cm2 and
an electric field of magnitude 1500 V/m. What is the total charge on
the two capacitors?

•••26 Capacitor 3 in Fig. 25-41a is a variable capacitor (its capaci-
tance C3 can be varied). Figure 25-41b gives the electric potential
V1 across capacitor 1 versus C3. The horizontal scale is set by C3s =
12.0 mF. Electric potential V1 approaches an asymptote of 10 V as
C3 : ".What are (a) the electric potential V across the battery, (b)
C1, and (c) C2?

V

a bS C1 C2
C3 C4

Fig. 25-34 Problem 19.

A

d

A

Fig. 25-35 Problem 20.
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Fig. 25-36 Problem 21.
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Fig. 25-37 Problem 22.

V

a

d

b
c

S C2
C1

C3

Fig. 25-38 Problem 23.
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Problem 24.
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Fig. 25-40
Problem 25.
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Fig. 25-41 Problem 26.

•••27 Figure 25-42 shows a
12.0 V battery and four
uncharged capacitors of capaci-
tances C1 ! 1.00 mF, C2 ! 2.00
mF, C3 ! 3.00 mF, and C4 ! 4.00
mF. If only switch S1 is
closed, what is the charge on (a)
capacitor 1, (b) capacitor 2, (c)
capacitor 3, and (d) capacitor 4?
If both switches are closed, what
is the charge on (e) capacitor 1,
(f) capacitor 2, (g) capacitor 3,
and (h) capacitor 4?

•••28 Figure 25-43 dis-
plays a 12.0 V battery and 3
uncharged capacitors of capaci-
tances C1 ! 4.00 mF, C2 ! 6.00
mF, and C3 ! 3.00 mF. The switch
is thrown to the left side until ca-
pacitor 1 is fully charged. Then
the switch is thrown to the right.
What is the final charge on (a) capacitor 1, (b) capacitor 2, and (c) ca-
pacitor 3?

Fig. 25-42 Problem 27.

S2

C1 C3

C2 C4

S1

B
+ –

S C2

C3C1

V0
+
–

Fig. 25-43 Problem 28.
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sec. 25-5 Energy Stored in an Electric Field
•29 What capacitance is required to store an energy of 10 kW ! h
at a potential difference of 1000 V?

•30 How much energy is stored in 1.00 m3 of air due to the “fair
weather” electric field of magnitude 150 V/m?

•31 A 2.0 mF capacitor and a 4.0 mF capacitor are con-
nected in parallel across a 300 V potential difference. Calculate the
total energy stored in the capacitors.

•32 A parallel-plate air-filled capacitor having area 40 cm2 and
plate spacing 1.0 mm is charged to a potential difference of 600 V.
Find (a) the capacitance, (b) the magnitude of the charge on each
plate, (c) the stored energy, (d) the electric field between the plates,
and (e) the energy density between the plates.

••33 A charged isolated metal sphere of diameter 10 cm has a po-
tential of 8000 V relative to V " 0 at infinity. Calculate the energy
density in the electric field near the surface of the sphere.

••34 In Fig. 25-28, a potential difference V " 100 V is applied
across a capacitor arrangement with capacitances C1 " 10.0 mF,
C2 " 5.00 mF, and C3 " 4.00 mF. What are (a) charge q3, (b) poten-
tial difference V3, and (c) stored energy U3 for capacitor 3, (d) q1,
(e) V1, and (f) U1 for capacitor 1, and (g) q2, (h) V2, and (i) U2 for
capacitor 2?

••35 Assume that a stationary electron is a point of charge. What
is the energy density u of its electric field at radial distances (a) r "
1.00 mm, (b) r " 1.00 mm, (c) r " 1.00 nm, and (d) r " 1.00 pm?
(e) What is u in the limit as r : 0?

••36 As a safety engineer,
you must evaluate the practice of
storing flammable conducting liq-
uids in nonconducting containers.
The company supplying a certain liq-
uid has been using a squat, cylindri-
cal plastic container of radius r "
0.20 m and filling it to height h " 10
cm, which is not the container’s full interior height (Fig. 25-44).
Your investigation reveals that during handling at the company,
the exterior surface of the container commonly acquires a nega-
tive charge density of magnitude 2.0 mC/m2 (approximately uni-
form). Because the liquid is a conducting material, the charge on
the container induces charge separation within the liquid. (a)
How much negative charge is induced in the center of the liq-
uid’s bulk? (b) Assume the capacitance of the central portion of
the liquid relative to ground is 35 pF. What is the potential en-
ergy associated with the negative charge in that effective capaci-
tor? (c) If a spark occurs between the ground and the central
portion of the liquid (through the venting port), the potential en-
ergy can be fed into the spark. The minimum spark energy
needed to ignite the liquid is 10 mJ. In this situation, can a spark
ignite the liquid?

••37 The parallel plates in a capacitor, with a
plate area of 8.50 cm2 and an air-filled separation of 3.00 mm, are
charged by a 6.00 V battery. They are then disconnected from the
battery and pulled apart (without discharge) to a separation of 8.00
mm. Neglecting fringing, find (a) the potential difference between
the plates, (b) the initial stored energy, (c) the final stored energy,
and (d) the work required to separate the plates.

••38 In Fig. 25-29, a potential difference V " 100 V is applied
across a capacitor arrangement with capacitances C1 " 10.0 mF,
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C2 " 5.00 mF, and C3 " 15.0 mF. What are (a) charge q3, (b) poten-
tial difference V3, and (c) stored energy U3 for capacitor 3, (d) q1,
(e) V1, and (f) U1 for capacitor 1, and (g) q2, (h) V2, and (i) U2 for
capacitor 2?

••39 In Fig. 25-45, C1 " 10.0 mF, C2 " 20.0 mF, and C3 " 25.0
mF. If no capacitor can with-
stand a potential difference of
more than 100 V without fail-
ure, what are (a) the magnitude
of the maximum potential dif-
ference that can exist between points A and B and (b) the maximum
energy that can be stored in the three-capacitor arrangement?

sec. 25-6 Capacitor with a Dielectric
•40 An air-filled parallel-plate capacitor has a capacitance of 1.3
pF. The separation of the plates is doubled, and wax is inserted be-
tween them. The new capacitance is 2.6 pF. Find the dielectric con-
stant of the wax.

•41 A coaxial cable used in a transmission line has an inner
radius of 0.10 mm and an outer radius of 0.60 mm. Calculate the
capacitance per meter for the cable. Assume that the space be-
tween the conductors is filled with polystyrene.

•42 A parallel-plate air-filled capacitor has a capacitance of 50
pF. (a) If each of its plates has an area of 0.35 m2, what is the sepa-
ration? (b) If the region between the plates is now filled with mate-
rial having k " 5.6, what is the capacitance?

•43 Given a 7.4 pF air-filled capacitor, you are asked to convert
it to a capacitor that can store up to 7.4 mJ with a maximum po-
tential difference of 652 V. Which dielectric in Table 25-1 should
you use to fill the gap in the capacitor if you do not allow for a
margin of error?

••44 You are asked to construct a capacitor having a capacitance
near 1 nF and a breakdown potential in excess of 10 000 V. You
think of using the sides of a tall Pyrex drinking glass as a dielec-
tric, lining the inside and outside curved surfaces with aluminum
foil to act as the plates. The glass is 15 cm tall with an inner radius
of 3.6 cm and an outer radius of 3.8 cm. What are the (a) capaci-
tance and (b) breakdown potential of this capacitor?

••45 A certain parallel-plate capacitor is filled with a dielectric
for which k " 5.5. The area of each plate is 0.034 m2, and the
plates are separated by 2.0 mm. The capacitor will fail (short out
and burn up) if the electric field between the plates exceeds 
200 kN/C. What is the maximum energy that can be stored in the
capacitor?

••46 In Fig. 25-46, how much charge
is stored on the parallel-plate capaci-
tors by the 12.0 V battery? One is
filled with air, and the other is filled
with a dielectric for which k " 3.00;
both capacitors have a plate area of
5.00 # 10$ 3 m2 and a plate separation
of 2.00 mm.

••47 A certain substance has a dielectric constant of
2.8 and a dielectric strength of 18 MV/m. If it is used as the dielec-
tric material in a parallel-plate capacitor, what minimum area
should the plates of the capacitor have to obtain a capacitance of
7.0 # 10$ 2 mF and to ensure that the capacitor will be able to with-
stand a potential difference of 4.0 kV?
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Fig. 25-44 Problem 36.
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sec. 25-5 Energy Stored in an Electric Field
•29 What capacitance is required to store an energy of 10 kW ! h
at a potential difference of 1000 V?

•30 How much energy is stored in 1.00 m3 of air due to the “fair
weather” electric field of magnitude 150 V/m?

•31 A 2.0 mF capacitor and a 4.0 mF capacitor are con-
nected in parallel across a 300 V potential difference. Calculate the
total energy stored in the capacitors.

•32 A parallel-plate air-filled capacitor having area 40 cm2 and
plate spacing 1.0 mm is charged to a potential difference of 600 V.
Find (a) the capacitance, (b) the magnitude of the charge on each
plate, (c) the stored energy, (d) the electric field between the plates,
and (e) the energy density between the plates.

••33 A charged isolated metal sphere of diameter 10 cm has a po-
tential of 8000 V relative to V " 0 at infinity. Calculate the energy
density in the electric field near the surface of the sphere.

••34 In Fig. 25-28, a potential difference V " 100 V is applied
across a capacitor arrangement with capacitances C1 " 10.0 mF,
C2 " 5.00 mF, and C3 " 4.00 mF. What are (a) charge q3, (b) poten-
tial difference V3, and (c) stored energy U3 for capacitor 3, (d) q1,
(e) V1, and (f) U1 for capacitor 1, and (g) q2, (h) V2, and (i) U2 for
capacitor 2?

••35 Assume that a stationary electron is a point of charge. What
is the energy density u of its electric field at radial distances (a) r "
1.00 mm, (b) r " 1.00 mm, (c) r " 1.00 nm, and (d) r " 1.00 pm?
(e) What is u in the limit as r : 0?

••36 As a safety engineer,
you must evaluate the practice of
storing flammable conducting liq-
uids in nonconducting containers.
The company supplying a certain liq-
uid has been using a squat, cylindri-
cal plastic container of radius r "
0.20 m and filling it to height h " 10
cm, which is not the container’s full interior height (Fig. 25-44).
Your investigation reveals that during handling at the company,
the exterior surface of the container commonly acquires a nega-
tive charge density of magnitude 2.0 mC/m2 (approximately uni-
form). Because the liquid is a conducting material, the charge on
the container induces charge separation within the liquid. (a)
How much negative charge is induced in the center of the liq-
uid’s bulk? (b) Assume the capacitance of the central portion of
the liquid relative to ground is 35 pF. What is the potential en-
ergy associated with the negative charge in that effective capaci-
tor? (c) If a spark occurs between the ground and the central
portion of the liquid (through the venting port), the potential en-
ergy can be fed into the spark. The minimum spark energy
needed to ignite the liquid is 10 mJ. In this situation, can a spark
ignite the liquid?

••37 The parallel plates in a capacitor, with a
plate area of 8.50 cm2 and an air-filled separation of 3.00 mm, are
charged by a 6.00 V battery. They are then disconnected from the
battery and pulled apart (without discharge) to a separation of 8.00
mm. Neglecting fringing, find (a) the potential difference between
the plates, (b) the initial stored energy, (c) the final stored energy,
and (d) the work required to separate the plates.

••38 In Fig. 25-29, a potential difference V " 100 V is applied
across a capacitor arrangement with capacitances C1 " 10.0 mF,

WWWILWSSM

SSM

C2 " 5.00 mF, and C3 " 15.0 mF. What are (a) charge q3, (b) poten-
tial difference V3, and (c) stored energy U3 for capacitor 3, (d) q1,
(e) V1, and (f) U1 for capacitor 1, and (g) q2, (h) V2, and (i) U2 for
capacitor 2?

••39 In Fig. 25-45, C1 " 10.0 mF, C2 " 20.0 mF, and C3 " 25.0
mF. If no capacitor can with-
stand a potential difference of
more than 100 V without fail-
ure, what are (a) the magnitude
of the maximum potential dif-
ference that can exist between points A and B and (b) the maximum
energy that can be stored in the three-capacitor arrangement?

sec. 25-6 Capacitor with a Dielectric
•40 An air-filled parallel-plate capacitor has a capacitance of 1.3
pF. The separation of the plates is doubled, and wax is inserted be-
tween them. The new capacitance is 2.6 pF. Find the dielectric con-
stant of the wax.

•41 A coaxial cable used in a transmission line has an inner
radius of 0.10 mm and an outer radius of 0.60 mm. Calculate the
capacitance per meter for the cable. Assume that the space be-
tween the conductors is filled with polystyrene.

•42 A parallel-plate air-filled capacitor has a capacitance of 50
pF. (a) If each of its plates has an area of 0.35 m2, what is the sepa-
ration? (b) If the region between the plates is now filled with mate-
rial having k " 5.6, what is the capacitance?

•43 Given a 7.4 pF air-filled capacitor, you are asked to convert
it to a capacitor that can store up to 7.4 mJ with a maximum po-
tential difference of 652 V. Which dielectric in Table 25-1 should
you use to fill the gap in the capacitor if you do not allow for a
margin of error?

••44 You are asked to construct a capacitor having a capacitance
near 1 nF and a breakdown potential in excess of 10 000 V. You
think of using the sides of a tall Pyrex drinking glass as a dielec-
tric, lining the inside and outside curved surfaces with aluminum
foil to act as the plates. The glass is 15 cm tall with an inner radius
of 3.6 cm and an outer radius of 3.8 cm. What are the (a) capaci-
tance and (b) breakdown potential of this capacitor?

••45 A certain parallel-plate capacitor is filled with a dielectric
for which k " 5.5. The area of each plate is 0.034 m2, and the
plates are separated by 2.0 mm. The capacitor will fail (short out
and burn up) if the electric field between the plates exceeds 
200 kN/C. What is the maximum energy that can be stored in the
capacitor?

••46 In Fig. 25-46, how much charge
is stored on the parallel-plate capaci-
tors by the 12.0 V battery? One is
filled with air, and the other is filled
with a dielectric for which k " 3.00;
both capacitors have a plate area of
5.00 # 10$ 3 m2 and a plate separation
of 2.00 mm.

••47 A certain substance has a dielectric constant of
2.8 and a dielectric strength of 18 MV/m. If it is used as the dielec-
tric material in a parallel-plate capacitor, what minimum area
should the plates of the capacitor have to obtain a capacitance of
7.0 # 10$ 2 mF and to ensure that the capacitor will be able to with-
stand a potential difference of 4.0 kV?
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Fig. 25-44 Problem 36.
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