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24.3 Application of Gauss’s Law to
Various Charge Distributions

24.4 Conductors in Electrostatic
Equilibrium

24.5 Formal Derivation of Gauss’s
Law

▲ In a table-top plasma ball, the colorful lines emanating from the sphere give evidence of
strong electric fields. Using Gauss’s law, we show in this chapter that the electric field
surrounding a charged sphere is identical to that of a point charge. (Getty Images)
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� Introduction

� Flux

� Flux of an Electric Field

� Gauss’ Law

� Gauss’ Law and Coulomb’s Law

� A Charged Isolated Conductor

� Applying Gauss’ Law



To find E due to different charged objects (from chapter 22)
1. Find dq
2. Find dE
3. Integrate dE

� For symmetrical charge distributions à Gauss’ law is used to find E

� To find E using Gauss’ law ? 
1. Choose a Gaussian surface
2. Find electric flux Φ
3. Find enclosed charge qenc

4. Calculate E

� Gaussian surface:
� A 1.hypothetical (imaginary) 2.closed surface 3.enclosing the charges
� Can have 4.any shape (better to be symmetry)
� e.g., if the charge is spread uniformly over a sphere

à spherical Gaussian surface
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
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:

! dA
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# " E(cos 180&) dA # $ E " dA # $ EA,
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KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Additional examples, video, and practice available at WileyPLUS
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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� If we know the electric field on a Gaussian surface
à we can evaluate qenc

� e.g., Fig. shows the electric field vectors 
à Gauss’ law tells us that the spherical surface must 
enclose net +ve charge 

� However, to calculate how much charge is enclosed, we need to 
calculate how much electric field is intercepted by the Gaussian 
surface

� This measure of intercepted field is called flux

HALLIDAY REVISED

23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that

dE
:

dE
:

E
:

(!k dq/r 2)dE
:

E
:

G A U S S ’  L A W 23
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W H AT  I S  P H YS I C S ?

Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.

v:

v:
v:

v:

v:

Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.

Spherical
Gaussian
surface

?
E
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23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that
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Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.
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Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Additional examples, video, and practice available at WileyPLUS
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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E
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E
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:

E
:

E
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:
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:
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:
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:
,

A
:
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:

(a)

Air flow

(b)

θ

(c) (d)

θ
vv

v A

Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.
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Fig. 23-3 A Gaussian surface of 
arbitrary shape immersed in an 
electric field.The surface is divided into
small squares of area !A.The electric field
vectors and the area vectors for three
representative squares, marked 1, 2, and 3,
are shown.
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Flux of an Electric Field
� An arbitrary (asymmetric) Gaussian surface immersed

in a nonuniform electric field

� The surface is divided into small squares of flat area ΔA

� Each element of area has an area vector ΔA
� Magnitude: the area ΔA
� Direction: perpendicular & away to Gaussian surface

� E is constant for any given square area

� The vectors ΔA & E make angle θ with each other

� The flux of the electric field for the Gaussian surface is
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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:
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E
:

E
:
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:

# $ ! %
:
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:
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:

!A
:

E
:

!A
:

!A
:

A
:

v:
# $ vA cos & $ v: ! A

:
,

A
:

v:

A
:

(a)

Air flow

(b)

θ

(c) (d)

θ
vv

v A

Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.

v:
A
:

v:
v:

v:
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surface 
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Φ = 0 

Φ > 0 
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∆ A 
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Pierce 
inward:
negative 
flux

Pierce 
outward:
positive 
flux

Skim: zero flux

Fig. 23-3 A Gaussian surface of 
arbitrary shape immersed in an 
electric field.The surface is divided into
small squares of area !A.The electric field
vectors and the area vectors for three
representative squares, marked 1, 2, and 3,
are shown.
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� The value of each scalar product (+ve, -ve, or 0) 
à Φ is +ve, -ve, or 0
� For square 1 , vector E points inward 

à -ve contribution
� For square 2, vector E lies in the surface 

à zero contribution
� For squares 3, vector E points outward 

à +ve contribution

� The flux of the electric field is a scalar quantity
The flux SI unit is (N m2/C)
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Before we discuss a flux involved in electrostatics, we need to rewrite Eq.
23-1 in terms of vectors. To do this, we first define an area vector as being a
vector whose magnitude is equal to an area (here the area of the loop) and whose
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1
as the scalar (or dot) product of the velocity vector of the airstream and the area
vector of the loop:

(23-2)

where u is the angle between and .
The word “flux” comes from the Latin word meaning “to flow.” That meaning

makes sense if we talk about the flow of air volume through the loop. However, Eq.
23-2 can be regarded in a more abstract way.To see this different way, note that we
can assign a velocity vector to each point in the airstream passing through the loop
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in-
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in-
terpretation, flux no longer means the actual flow of something through an area—
rather it means the product of an area and the field across that area.

23-3 Flux of an Electric Field
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us
divide the surface into small squares of area !A, each square being small enough
to permit us to neglect any curvature and to consider the individual square to be
flat. We represent each such element of area with an area vector , whose mag-
nitude is the area !A. Each vector is perpendicular to the Gaussian surface
and directed away from the interior of the surface.

Because the squares have been taken to be arbitrarily small, the electric field
may be taken as constant over any given square. The vectors and for

each square then make some angle u with each other. Figure 23-3 shows an
enlarged view of three squares on the Gaussian surface and the angle u for each.

A provisional definition for the flux of the electric field for the Gaussian
surface of Fig. 23-3 is

(23-3)

This equation instructs us to visit each square on the Gaussian surface, evaluate the
scalar product for the two vectors and we find there, and sum the re-
sults algebraically (that is, with signs included) for all the squares that make up the
surface. The value of each scalar product (positive, negative, or zero) determines
whether the flux through its square is positive, negative, or zero. Squares like square
1 in Fig. 23-3, in which points inward, make a negative contribution to the sum of
Eq. 23-3. Squares like 2, in which lies in the surface, make zero contribution.
Squares like 3, in which points outward, make a positive contribution.E
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Fig. 23-2 (a) A uniform airstream of ve-
locity is perpendicular to the plane of a
square loop of area A.(b) The component
of perpendicular to the plane of the loop
is v cos u, where u is the angle between 
and a normal to the plane. (c) The area vec-
tor is perpendicular to the plane of the
loop and makes an angle u with . (d) The
velocity field intercepted by the area of the
loop.
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Fig. 23-3 A Gaussian surface of 
arbitrary shape immersed in an 
electric field.The surface is divided into
small squares of area !A.The electric field
vectors and the area vectors for three
representative squares, marked 1, 2, and 3,
are shown.
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� (a) +EA

� (b) -EA

� (c) 0

� (d) 0
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,
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:

E
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# "
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 E
:

! dA
:

% "
b
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:
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:
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c

 E
:

! dA
:
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:
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:

E
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! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
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E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
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z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
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 E
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! dA
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# " E(cos 180&) dA # $ E " dA # $ EA,
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an xaxis.The charges are q1 ! 1.60 # 10"19 C and q2 !
3.20 # 10"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10 "24 N)î

F
:

12

F
:

12

 ! 1.15 # 10 "24 N.

  #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1

4%&0
 

!q1!!q2!
R2

F
:

12

F
:

12

KEY I DEAS KEY I DEA

R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.

It is pulled toward
particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.

x

y

q2q1

q4

3__
4 R

(e)

( f )

θ

x

y

θF12

F14

Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10 "24 N)î .

F
:

13

  ! 2.05 # 10 "24 N.

 #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(3
4)

2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(3
4R)2

F
:

13

F
:

13

F
:

13

A
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian
surface

θ

a c

θ

b

dA

dA

dA
E

E

E

Additional examples, video, and practice available at WileyPLUS

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 607

60723-3 FLUX OF AN E LECTR IC F I E LD
PART 3

HALLIDAY REVISED

The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an xaxis.The charges are q1 ! 1.60 # 10"19 C and q2 !
3.20 # 10"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10 "24 N)î

F
:

12

F
:

12

 ! 1.15 # 10 "24 N.

  #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1

4%&0
 

!q1!!q2!
R2

F
:

12

F
:

12

KEY I DEAS KEY I DEA

R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.

It is pulled toward
particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.

x

y

q2q1

q4

3__
4 R

(e)

( f )

θ

x

y

θF12

F14

Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10 "24 N)î .

F
:

13

  ! 2.05 # 10 "24 N.

 #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(3
4)

2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(3
4R)2

F
:

13

F
:

13

F
:

13

A

halliday_c21_561-579v2.qxd  16-11-2009  10:54  Page 567

608 CHAPTE R 23 GAUSS’ LAW

HALLIDAY REVISED

Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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y

x

z
x = 1.0 m x = 3.0 m

E

Ex

Ex

Ey

Ey

y

x

z

dA

y

x

z

dA

Ex

Ey

y

x

z

dA Ex

Ey

y

x

z

dA

dA

dA

dA

dAGaussian
surface

The y component
is a constant.

The x component
depends on the
value of x.

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The y component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives inward flux. The
dot product is negative.

The differential area vector
(for a surface element) is
perpendicular to the surface
and outward.

(c)

(e)

(d )

(b)(a)

Fig. 23-5 (a) A Gaussian cube with one edge
on the x axis lies within a nonuniform
electric field that depends on the value of x. (b)
Each differential area element has an outward
vector that is perpendicular to the area. (c)
Right face: the x component of the field pierces
the area and produces positive (outward) flux.
The y component does not pierce the area and
thus does not produce any flux. (d) Left face: the
x component of the field produces negative (in-
ward) flux. (e) Top face: the y component of the
field produces positive (outward) flux.

A

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or
(what is the same for most practical purposes) in air. In Chapter 25,we modify Gauss’
law to include situations in which a material such as mica,oil,or glass is present.

In Eqs. 23-6 and 23-7, the net charge qenc is the algebraic sum of all the
enclosed positive and negative charges, and it can be positive, negative, or zero.We
include the sign, rather than just use the magnitude of the enclosed charge, be-
cause the sign tells us something about the net flux through the Gaussian surface:
If qenc is positive, the net flux is outward; if qenc is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is
not included in the term qenc in Gauss’ law. The exact form and location of the
charges inside the Gaussian surface are also of no concern; the only things that
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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z

dA

Ex

Ey

y

x

z

dA Ex

Ey

y

x

z

dA

dA

dA

dA

dAGaussian
surface

The y component
is a constant.

The x component
depends on the
value of x.

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The y component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives inward flux. The
dot product is negative.

The differential area vector
(for a surface element) is
perpendicular to the surface
and outward.

(c)

(e)

(d )

(b)(a)

Fig. 23-5 (a) A Gaussian cube with one edge
on the x axis lies within a nonuniform
electric field that depends on the value of x. (b)
Each differential area element has an outward
vector that is perpendicular to the area. (c)
Right face: the x component of the field pierces
the area and produces positive (outward) flux.
The y component does not pierce the area and
thus does not produce any flux. (d) Left face: the
x component of the field produces negative (in-
ward) flux. (e) Top face: the y component of the
field produces positive (outward) flux.

A

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or
(what is the same for most practical purposes) in air. In Chapter 25,we modify Gauss’
law to include situations in which a material such as mica,oil,or glass is present.

In Eqs. 23-6 and 23-7, the net charge qenc is the algebraic sum of all the
enclosed positive and negative charges, and it can be positive, negative, or zero.We
include the sign, rather than just use the magnitude of the enclosed charge, be-
cause the sign tells us something about the net flux through the Gaussian surface:
If qenc is positive, the net flux is outward; if qenc is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is
not included in the term qenc in Gauss’ law. The exact form and location of the
charges inside the Gaussian surface are also of no concern; the only things that

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 609

56721-4 COU LOM B’S LAW
PART 3

HALLIDAY REVISED

Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an xaxis.The charges are q1 ! 1.60 # 10"19 C and q2 !
3.20 # 10"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10 "24 N)î

F
:

12

F
:

12

 ! 1.15 # 10 "24 N.

  #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1

4%&0
 

!q1!!q2!
R2

F
:

12

F
:

12

KEY I DEAS KEY I DEA

R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.

It is pulled toward
particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.

x

y

q2q1

q4

3__
4 R

(e)

( f )

θ

x

y

θF12

F14

Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10 "24 N)î .

F
:

13

  ! 2.05 # 10 "24 N.

 #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(3
4)

2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(3
4R)2

F
:

13

F
:

13

F
:

13

A
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Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10

"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an xaxis.The charges are q1 ! 1.60 # 10

"19 C and q2 !
3.20 # 10

"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10
"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10
"24 N)î

F
:

12

F
:

12

 ! 1.15 # 10
"24 N.

  #
(1.60 # 10

"19 C)(3.20 # 10
"19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1

4%&0
 

!q1!!q2!
R2

F
:

12

F
:

12

KEY I DEAS KEY I DEA

R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.
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particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.
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q2q1

q4
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(e)
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θ
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y

θF12
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Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10
"24 N)î .

F
:

13

  ! 2.05 # 10
"24 N.

 #
(1.60 # 10

"19 C)(3.20 # 10
"19 C)

(
3
4)2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(
3
4R)2

F
:

13

F
:

13

F
:

13

A
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Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an xaxis.The charges are q1 ! 1.60 # 10"19 C and q2 !
3.20 # 10"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10 "24 N)î

F
:

12

F
:

12

 ! 1.15 # 10 "24 N.

  #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1
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R2
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This is the third
arrangement.
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This is still the
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Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10 "24 N)î .

F
:

13

  ! 2.05 # 10 "24 N.
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(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(3
4)

2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(3
4R)2

F
:

13

F
:

13

F
:

13

A

halliday_c21_561-579v2.qxd  16-11-2009  10:54  Page 567

60923-4 GAUSS’ LAW
PART 3

HALLIDAY REVISED

y

x

z
x = 1.0 m x = 3.0 m

E

Ex

Ex

Ey

Ey

y

x

z

dA

y

x

z

dA

Ex

Ey

y

x

z

dA Ex

Ey

y

x

z

dA

dA

dA

dA

dAGaussian
surface

The y component
is a constant.

The x component
depends on the
value of x.

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The y component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives inward flux. The
dot product is negative.

The differential area vector
(for a surface element) is
perpendicular to the surface
and outward.

(c)

(e)

(d )

(b)(a)

Fig. 23-5 (a) A Gaussian cube with one edge
on the x axis lies within a nonuniform
electric field that depends on the value of x. (b)
Each differential area element has an outward
vector that is perpendicular to the area. (c)
Right face: the x component of the field pierces
the area and produces positive (outward) flux.
The y component does not pierce the area and
thus does not produce any flux. (d) Left face: the
x component of the field produces negative (in-
ward) flux. (e) Top face: the y component of the
field produces positive (outward) flux.

A

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or
(what is the same for most practical purposes) in air. In Chapter 25,we modify Gauss’
law to include situations in which a material such as mica,oil,or glass is present.

In Eqs. 23-6 and 23-7, the net charge qenc is the algebraic sum of all the
enclosed positive and negative charges, and it can be positive, negative, or zero.We
include the sign, rather than just use the magnitude of the enclosed charge, be-
cause the sign tells us something about the net flux through the Gaussian surface:
If qenc is positive, the net flux is outward; if qenc is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is
not included in the term qenc in Gauss’ law. The exact form and location of the
charges inside the Gaussian surface are also of no concern; the only things that
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The dot product is positive.
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field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives inward flux. The
dot product is negative.

The differential area vector
(for a surface element) is
perpendicular to the surface
and outward.

(c)

(e)

(d )

(b)(a)

Fig. 23-5 (a) A Gaussian cube with one edge
on the x axis lies within a nonuniform
electric field that depends on the value of x. (b)
Each differential area element has an outward
vector that is perpendicular to the area. (c)
Right face: the x component of the field pierces
the area and produces positive (outward) flux.
The y component does not pierce the area and
thus does not produce any flux. (d) Left face: the
x component of the field produces negative (in-
ward) flux. (e) Top face: the y component of the
field produces positive (outward) flux.

A

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or
(what is the same for most practical purposes) in air. In Chapter 25,we modify Gauss’
law to include situations in which a material such as mica,oil,or glass is present.

In Eqs. 23-6 and 23-7, the net charge qenc is the algebraic sum of all the
enclosed positive and negative charges, and it can be positive, negative, or zero.We
include the sign, rather than just use the magnitude of the enclosed charge, be-
cause the sign tells us something about the net flux through the Gaussian surface:
If qenc is positive, the net flux is outward; if qenc is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is
not included in the term qenc in Gauss’ law. The exact form and location of the
charges inside the Gaussian surface are also of no concern; the only things that
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.
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 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)
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dA
:
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dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.
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 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)
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:
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:
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:

" $ dAî
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:
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!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.
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 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.
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 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:
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dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.
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 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)
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:
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dA
:
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:
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!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)
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:
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:
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:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Gauss’ Law
Gauss’ law relates the net flux Φ of an electric field through a Gaussian surface to the 
net charge qenc that is enclosed by that surface

� E: resulting from all charges inside & outside the Gaussian surface

� net qenc : 
� Algebraic sum of all the enclosed +ve & -ve charges
� Can be +ve, -ve, or zero
� Its sign is important:

� If qenc is +ve à E is outward
� If qenc is -ve à E is inward

� Charge outside the surface is not included in qenc

� The exact form & location of the charges inside the Gaussian surface are not important
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian
surface

θ

a c

θ

b

dA

dA

dA
E

E

E

Additional examples, video, and practice available at WileyPLUS
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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� Surface S1: E outwardà + Φ à + qenc

� Surface S2: E inward à - Φ à - qenc

� Surface S3: no charge àqenc = 0 à Φ = 0

� Surface S4: no net charge because qenc = -q + q = 0 à Φ = 0
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CHECKPOINT 2

The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N ! m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?

7
2

7

5 3

4
4

6

5

33

10

5

7

2
6 8

5

(1) (2) (3)

matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section. Let us consider each in turn.

Surface S1. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if " is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc # 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S4 as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.

E
:

Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S1

encloses the positive charge. Surface
S2 encloses the negative charge.
Surface S3 encloses no charge. Surface
S4 encloses both charges and thus no
net charge.

S1

S4

S2

S3

–

+

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 610

0                       +ve -ve

610 CHAPTE R 23 GAUSS’ LAW

HALLIDAY REVISED

CHECKPOINT 2

The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N ! m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a
negative net charge, and (c) zero net charge?

7
2

7

5 3

4
4

6

5

33
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2
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5

(1) (2) (3)

matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the
net enclosed charge. The quantity on the left side of Eq. 23-7, however, is the
electric field resulting from all charges, both those inside and those outside the
Gaussian surface. This statement may seem to be inconsistent, but keep this in
mind: The electric field due to a charge outside the Gaussian surface contributes
zero net flux through the surface, because as many field lines due to that charge
enter the surface as leave it.

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in
magnitude but opposite in sign, and the field lines describing the electric fields
the charges set up in the surrounding space. Four Gaussian surfaces are also
shown, in cross section. Let us consider each in turn.

Surface S1. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if " is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux of
the electric field through this surface is negative and so is the enclosed charge, as
Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc # 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That is
reasonable because there are as many field lines leaving surface S4 as en-
tering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-6? The pattern of the field lines would certainly change, but
the net flux for each of the four Gaussian surfaces would not change. We can
understand this because the field lines associated with the added Q would pass
entirely through each of the four Gaussian surfaces, making no contribution to
the net flux through any of them. The value of Q would not enter Gauss’ law in
any way, because Q lies outside all four of the Gaussian surfaces that we are
considering.

E
:

Fig. 23-6 Two point charges, equal
in magnitude but opposite in sign, and
the field lines that represent their net
electric field. Four Gaussian surfaces
are shown in cross section. Surface S1

encloses the positive charge. Surface
S2 encloses the negative charge.
Surface S3 encloses no charge. Surface
S4 encloses both charges and thus no
net charge.
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–
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Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an xaxis.The charges are q1 ! 1.60 # 10"19 C and q2 !
3.20 # 10"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10 "24 N)î

F
:

12

F
:

12

 ! 1.15 # 10 "24 N.

  #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1

4%&0
 

!q1!!q2!
R2

F
:

12

F
:

12

KEY I DEAS KEY I DEA

R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.

It is pulled toward
particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.

x

y

q2q1

q4

3__
4 R

(e)

( f )

θ

x

y

θF12

F14

Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10 "24 N)î .

F
:

13

  ! 2.05 # 10 "24 N.

 #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(3
4)

2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(3
4R)2

F
:

13

F
:

13

F
:

13

A
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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q3
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian
surface

θ

a c

θ

b

dA

dA

dA
E

E

E

Additional examples, video, and practice available at WileyPLUS
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an xaxis.The charges are q1 ! 1.60 # 10"19 C and q2 !
3.20 # 10"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10 "24 N)î

F
:

12

F
:

12

 ! 1.15 # 10 "24 N.

  #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1

4%&0
 

!q1!!q2!
R2

F
:

12

F
:

12

KEY I DEAS KEY I DEA

R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.

It is pulled toward
particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.

x

y

q2q1

q4

3__
4 R

(e)

( f )

θ

x

y

θF12

F14

Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10 "24 N)î .

F
:

13

  ! 2.05 # 10 "24 N.

 #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(3
4)

2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(3
4R)2

F
:

13

F
:

13

F
:

13

A
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y

x

z
x = 1.0 m x = 3.0 m

E

Ex

Ex

Ey

Ey

y

x

z

dA

y

x

z

dA

Ex

Ey

y

x

z

dA Ex

Ey

y

x

z

dA

dA

dA

dA

dAGaussian
surface

The y component
is a constant.

The x component
depends on the
value of x.

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The y component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives inward flux. The
dot product is negative.

The differential area vector
(for a surface element) is
perpendicular to the surface
and outward.

(c)

(e)

(d )

(b)(a)

Fig. 23-5 (a) A Gaussian cube with one edge
on the x axis lies within a nonuniform
electric field that depends on the value of x. (b)
Each differential area element has an outward
vector that is perpendicular to the area. (c)
Right face: the x component of the field pierces
the area and produces positive (outward) flux.
The y component does not pierce the area and
thus does not produce any flux. (d) Left face: the
x component of the field produces negative (in-
ward) flux. (e) Top face: the y component of the
field produces positive (outward) flux.

A

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or
(what is the same for most practical purposes) in air. In Chapter 25,we modify Gauss’
law to include situations in which a material such as mica,oil,or glass is present.

In Eqs. 23-6 and 23-7, the net charge qenc is the algebraic sum of all the
enclosed positive and negative charges, and it can be positive, negative, or zero.We
include the sign, rather than just use the magnitude of the enclosed charge, be-
cause the sign tells us something about the net flux through the Gaussian surface:
If qenc is positive, the net flux is outward; if qenc is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is
not included in the term qenc in Gauss’ law. The exact form and location of the
charges inside the Gaussian surface are also of no concern; the only things that
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian
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Additional examples, video, and practice available at WileyPLUS
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
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Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
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Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
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Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
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Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
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Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian
surface

θ

a c

θ

b

dA

dA

dA
E

E

E

Additional examples, video, and practice available at WileyPLUS
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Examples:

Q.1. Two charges 25.9𝝁𝐂 and -8.2 𝝁𝐂 are confined in a spherical surface 
of radius r = 5cm. Calculate the net electric flux through the surface. 
Calculate the magnitude of the electric field at the surface.

𝛷 = &'()
*+

= ,-./01., ×3456

1.1-×34578
= 2×10<N.m2/C

𝛷 = 𝐸. 𝐴 = 𝐸𝐴𝑐𝑜𝑠0 = 𝐸𝐴

àE= 𝛷/A= ,×346

C(E.3C)(4.4-)8
= 6.4×10IN/C

Q.2. A certain charge is enclosed in a sphere of radius R. If the electric 
flux through the sphere is 450 N.m2/C, calculate the charge q.

𝛷 = &'()
*+

=à 𝑞 = 𝛷𝜀K = 450×8.85×1003, = 3.98𝑛𝐶

746 CHAPTE R  24 •  Gauss’s Law

Example 24.4 The Electric Field Due to a Point Charge

Starting with Gauss’s law, calculate the electric field due to
an isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show
how to solve for the electric field with Gauss’s law. Figure
24.10 and our discussion of the electric field due to a point
charge in Chapter 23 help us to conceptualize the physical
situation. Because the space around the single charge has
spherical symmetry, we categorize this problem as one in
which there is enough symmetry to apply Gauss’s law. To
analyze any Gauss’s law problem, we consider the details of
the electric field and choose a gaussian surface that satisfies
some or all of the conditions that we have listed above. We
choose a spherical gaussian surface of radius r centered on
the point charge, as shown in Figure 24.10. The electric field
due to a positive point charge is directed radially outward by

symmetry and is therefore normal to the surface at every
point. Thus, as in condition (2), E is parallel to dA at each
point. Therefore, E ! dA " E dA and Gauss’s law gives

By symmetry, E is constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

where we have used the fact that the surface area of a
sphere is 4#r 2. Now, we solve for the electric field:

To finalize this problem, note that this is the familiar
electric field due to a point charge that we developed from
Coulomb’s law in Chapter 23.

What If? What if the charge in Figure 24.10 were not at the
center of the spherical gaussian surface?

Answer In this case, while Gauss’s law would still be valid,
the situation would not possess enough symmetry to evalu-
ate the electric field. Because the charge is not at the center,
the magnitude of E would vary over the surface of the
sphere and the vector E would not be everywhere perpen-
dicular to the surface.

ke   
q

r  
2E "

q
4#$0r 

2 "

!  E  dA " E  ! d A " E (4# r  
2) "

q 

$0

%E " !  E!d A " !  E  dA "
q 

$0

24.3 Application of Gauss’s Law to Various 
Charge Distributions

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry. The following exam-
ples demonstrate ways of choosing the gaussian surface over which the surface integral
given by Equation 24.6 can be simplified and the electric field determined. In
choosing the surface, we should always take advantage of the symmetry of the charge
distribution so that we can remove E from the integral and solve for it. The goal in this
type of calculation is to determine a surface that satisfies one or more of the following
conditions:

1. The value of the electric field can be argued by symmetry to be constant over the
surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic product
E dA because E and d A are parallel.

3. The dot product in Equation 24.6 is zero because E and d A are perpendicular.

4. The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of this
chapter.

▲ PITFALL PREVENTION
24.2 Gaussian Surfaces

are not Real
A gaussian surface is an imaginary
surface that you choose to satisfy
the conditions listed here. It does
not have to coincide with a physi-
cal surface in the situation.

Figure 24.10 (Example 24.4) The point charge q is at the
center of the spherical gaussian surface, and E is parallel to d A
at every point on the surface.

Gaussian
surface

r

q

dA

E
+
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).

E
:

E "
$

2%#0r

E
:

E
:

E
:

E
:

r 

h 

λ + 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

2   r π 

Gaussian 
surface 

E 

There is flux only
through the
curved surface.

Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.

R

R/2

(a) (b)

+
+

+

+
+

+ +
+

+

+
+

+ +
+

Gaussian
surface __

_

_

_

_
_ _

_
_

_

_

_
_

charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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Q.3. An 8m2 plate is immersed in a uniform electric field of 2000N/C. If 
the plane of the plate makes an angle of 90o with the electric field, 
calculate the electric flux and find the enclosed charge.

Answer:

Since the plane makes an angle 90o with the electric field, this means the 
area unit vector 𝐴 makes Zero angle with the electric field

𝛷 = 𝐸. 𝐴 = 𝐸𝐴𝑐𝑜𝑠0 = 16×10E𝑁.
𝑚,

𝐶

𝛷 = &'()
*+

à 𝑞TUV = 𝛷𝜀K = 16×10E×8.85×1003, = 141.6𝑛𝐶

Examples:



Gauss’ Law and Coulomb’s Law

� Gauss’ law & Coulomb’s law relate q & E in static situations

� Deriving  Coulomb’s law from Gauss' law:
� A spherical Gaussian surface of radius r is drawn around +q
� Gaussian surface is divided  into differential areas dA
� Vector dA is perpendicular to the surface & directed outward
� E is also perpendicular to the surface and directed outward 

à θ between E & dA = zero

� qenc = q, E is constant à à
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CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9ashows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
1

4$#0
 

q
r 2 .

#0E ! dA " q . 

#0 ! E
:

! dA
:

" #0 ! E dA " qenc 

.

dA
:

E
:

E
:

dA
:

Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.

r

q

Gaussian
surface

+
E
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CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9ashows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
1

4$#0
 

q
r 2 .

#0E ! dA " q . 

#0 ! E
:

! dA
:

" #0 ! E dA " qenc 

.

dA
:

E
:

E
:

dA
:

Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.
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CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9ashows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
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q
r 2 .

#0E ! dA " q . 

#0 ! E
:

! dA
:

" #0 ! E dA " qenc 

.

dA
:

E
:

E
:

dA
:

Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.
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CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9ashows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
1

4$#0
 

q
r 2 .

#0E ! dA " q . 

#0 ! E
:

! dA
:

" #0 ! E dA " qenc 

.

dA
:

E
:

E
:

dA
:

Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.

r

q

Gaussian
surface

+
E
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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Fig. 22-6 The electric field vectors at
various points around a positive point
charge.
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Fig. 22-4 Field lines for two equal positive
point charges.The charges repel each other.
(The lines terminate on distant negative
charges.) To “see”the actual three-dimen-
sional pattern of field lines,mentally rotate
the pattern shown here about an axis passing
through both charges in the plane of the page.
The three-dimensional pattern and the elec-
tric field it represents are said to have rota-
tional symmetry about that axis.The electric
field vector at one point is shown;note that it
is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point
charge and a nearby negative point charge
that are equal in magnitude.The charges at-
tract each other.The pattern of field lines and
the electric field it represents have rotational
symmetry about an axis passing through both
charges in the plane of the page.The electric
field vector at one point is shown; the vector
is tangent to the field line through the point.

positive test charge at any point near the sheet
of Fig. 22-3a, the net electrostatic force acting on
the test charge would be perpendicular to the
sheet, because forces acting in all other direc-
tions would cancel one another as a result of
the symmetry. Moreover, the net force on the
test charge would point away from the sheet as
shown.Thus, the electric field vector at any point
in the space on either side of the sheet is also
perpendicular to the sheet and directed away
from it (Figs. 22-3b and c). Because the charge is
uniformly distributed along the sheet, all the

field vectors have the same magnitude. Such an electric field, with the same mag-
nitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi-
nitely large, but if we consider a region that is near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5
shows the pattern for two charges that are equal in magnitude but of opposite
sign, a configuration that we call an electric dipole. Although we do not often use
field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
From Coulomb’s law (Eq. 21-1), the electrostatic force acting on q0 is

(22-2)

The direction of is directly away from the point charge if q is positive, and directly
toward the point charge if q is negative.The electric field vector is, from Eq.22-1,

(point charge). (22-3)

The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
gives the field at every point around the point charge q. The field for a positive
point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net,or resultant,electric field due to more than one point
charge. If we place a positive test charge q0 near n point charges q1, q2, . . . , qn, then,
from Eq.21-7, the net force from the n point charges acting on the test charge is

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

(22-4)

Here is the electric field that would be set up by point charge i acting alone.
Equation 22-4 shows us that the principle of superposition applies to electric
fields as well as to electrostatic forces.

E
:

i

! E
:

1 " E
:

2 " # # # " E
:

n.

E
:

!
F
:

0

q0
!

F
:

01

q0
"

F
:

02

q0
" # # # "

F
:

0n

q0

F
:

0 ! F
:

01 " F
:

02 " # # # " F
:

0n.

F
:

0

E
:

E
:

!
F
:

q0
!

1
4$%0

 
q
r2 r̂

F
:

F
:

!
1

4$%0
 

qq0

r2 r̂ .

+

–
E

E

+

+
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Example 24.4 The Electric Field Due to a Point Charge

Starting with Gauss’s law, calculate the electric field due to
an isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show
how to solve for the electric field with Gauss’s law. Figure
24.10 and our discussion of the electric field due to a point
charge in Chapter 23 help us to conceptualize the physical
situation. Because the space around the single charge has
spherical symmetry, we categorize this problem as one in
which there is enough symmetry to apply Gauss’s law. To
analyze any Gauss’s law problem, we consider the details of
the electric field and choose a gaussian surface that satisfies
some or all of the conditions that we have listed above. We
choose a spherical gaussian surface of radius r centered on
the point charge, as shown in Figure 24.10. The electric field
due to a positive point charge is directed radially outward by

symmetry and is therefore normal to the surface at every
point. Thus, as in condition (2), E is parallel to dA at each
point. Therefore, E ! dA " E dA and Gauss’s law gives

By symmetry, E is constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

where we have used the fact that the surface area of a
sphere is 4#r 2. Now, we solve for the electric field:

To finalize this problem, note that this is the familiar
electric field due to a point charge that we developed from
Coulomb’s law in Chapter 23.

What If? What if the charge in Figure 24.10 were not at the
center of the spherical gaussian surface?

Answer In this case, while Gauss’s law would still be valid,
the situation would not possess enough symmetry to evalu-
ate the electric field. Because the charge is not at the center,
the magnitude of E would vary over the surface of the
sphere and the vector E would not be everywhere perpen-
dicular to the surface.

ke   
q

r  
2E "

q
4#$0r 

2 "

!  E  dA " E  ! d A " E (4# r  
2) "

q 

$0

%E " !  E!d A " !  E  dA "
q 

$0

24.3 Application of Gauss’s Law to Various 
Charge Distributions

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry. The following exam-
ples demonstrate ways of choosing the gaussian surface over which the surface integral
given by Equation 24.6 can be simplified and the electric field determined. In
choosing the surface, we should always take advantage of the symmetry of the charge
distribution so that we can remove E from the integral and solve for it. The goal in this
type of calculation is to determine a surface that satisfies one or more of the following
conditions:

1. The value of the electric field can be argued by symmetry to be constant over the
surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic product
E dA because E and d A are parallel.

3. The dot product in Equation 24.6 is zero because E and d A are perpendicular.

4. The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of this
chapter.

▲ PITFALL PREVENTION
24.2 Gaussian Surfaces

are not Real
A gaussian surface is an imaginary
surface that you choose to satisfy
the conditions listed here. It does
not have to coincide with a physi-
cal surface in the situation.

Figure 24.10 (Example 24.4) The point charge q is at the
center of the spherical gaussian surface, and E is parallel to d A
at every point on the surface.

Gaussian
surface

r

q

dA

E
+
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CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9ashows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
1

4$#0
 

q
r 2 .

#0E ! dA " q . 

#0 ! E
:

! dA
:

" #0 ! E dA " qenc 

.

dA
:

E
:

E
:

dA
:

Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.

r

q

Gaussian
surface

+
E
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(a) equal; 
(b) equal; 
(c) equal
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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A Charged Isolated Conductor

Figure shows isolated, charged piece of copper hanging from an insulating 
thread & having an excess charge q

The Gaussian surface just inside the surface of the conductor

� E = zero everywhere inside a conductor
� If this were not true, E would exert F on free electrons of the conductor 

à current would always exist within a conductor 

� à E = zero for all points on the Gaussian surface 

� à Φ through the Gaussian surface = zero

� à the net qenc = zero
à the excess charge must be outside the Gaussian surface
à it must lie on the actual surface of the conductor
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CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9ashows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
1

4$#0
 

q
r 2 .

#0E ! dA " q . 

#0 ! E
:

! dA
:

" #0 ! E dA " qenc 

.

dA
:

E
:

E
:

dA
:

Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.
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q
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surface

+
E
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CHECKPOINT 3

There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the new
Gaussian surface greater than, less than, or equal to !i?

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be found
within the body of the conductor.

23-6 A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-9ashows, in cross section, an isolated lump of copper hanging from
an insulating thread and having an excess charge q. We place a Gaussian surface
just inside the actual surface of the conductor.

23-5 Gauss’ Law and Coulomb’s Law
Because Gauss’ law and Coulomb’s law are different ways of describing the rela-
tion between electric charge and electric field in static situations, we should be
able to derive each from the other. Here we derive Coulomb’s law from Gauss’
law and some symmetry considerations.

Figure 23-8 shows a positive point charge q, around which we have drawn a
concentric spherical Gaussian surface of radius r. Let us divide this surface into
differential areas dA. By definition, the area vector at any point is perpendic-
ular to the surface and directed outward from the interior. From the symmetry of
the situation, we know that at any point the electric field is also perpendicular
to the surface and directed outward from the interior. Thus, since the angle u
between and is zero, we can rewrite Eq. 23-7 for Gauss’ law as

(23-8)

Here qenc " q. Although E varies radially with distance from q, it has the same
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken
over that surface, E is a constant in the integration and can be brought out in
front of the integral sign.That gives us

(23-9)

The integral is now merely the sum of all the differential areas dA on the sphere
and thus is just the surface area, 4pr 2. Substituting this, we have

#0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
1

4$#0
 

q
r 2 .

#0E ! dA " q . 

#0 ! E
:

! dA
:

" #0 ! E dA " qenc 

.

dA
:

E
:

E
:

dA
:

Fig. 23-9 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper
surface

Gaussian
surface

(a)

(b)

Copper
surface

Gaussian
surface

Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q.

r

q

Gaussian
surface

+
E
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Sample Problem

for x . This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face; so

!r " (9.0 N/C)(4.0 m2) " 36 N # m2/C. (Answer)

Left face: The procedure for finding the flux through the
left face is the same as that for the right face. However, two
factors change. (1) The differential area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-5d). (2) The term x again appears in our integration,
and it is again constant over the face being considered.
However, on the left face, x " 1.0 m. With these two
changes, we find that the flux through the left face is

!l " $ 12 N # m2/C. (Answer)

Top face: The differential area vector points in the posi-
tive direction of the y axis, and thus (Fig. 23-5e).
The flux through the top face is then

(Answer) " 16 N #m2/C.

 " ! 

 (0 % 4.0 dA) " 4.0 ! dA

 " ! [(3.0x )(dA)î ! ĵ % (4.0)(dA)ĵ ! ĵ]

 !t " !(3.0x î % 4.0ĵ) ! (dAĵ)

!t

dA
:

" dAĵ
dA

:

!l

dA
:

" $ dAî
dA

:

"! dA

!r "  3.0 ! (3.0) dA " 9.0 ! dA.

Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the
top face? (We consider the other faces in another sample
problem.)

E
:

" 3.0x î % 4.0ĵ

KEY I DEA

We can find the flux ! through the surface by integrating the
scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any area element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-5b and c, but we would have an
identical vector for any other choice of an area element on
that face. The most convenient way to express the vector is
in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value

" !  (3.0x  dA % 0) " 3.0 ! x  dA.

" !  [(3.0x )(dA)î ! î % (4.0)(dA)ĵ ! î]

!r " ! E
:

! dA
:

" ! (3.0x î % 4.0ĵ) ! (dAî)

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

Additional examples, video, and practice available at WileyPLUS

23-4 Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

&0! " qenc (Gauss’ law). (23-6)

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)&0 " E
:

! dA
:

" qenc
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian
surface

θ

a c

θ

b

dA

dA

dA
E

E

E

Additional examples, video, and practice available at WileyPLUS
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.

KEY I DEA

1 9 8 8  

L I B E R T Y 

IN GOD WE 
TRUST

L I B E R T Y 

q1

q2

q3

S
+

–

–

+
–q4

q5

Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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� If conductor is spherical
à q distribute uniformly

� If conductor is not spherical
à q distribute not uniformly
àσ (charge q/area A) varies everywhere over the surface of any nonspherical
conductor 
à Difficult to find E that sets up by the surface charges
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.

E #
$

"0

E
:

E
:

E
:

Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.

+ + + + + + + 

+ + + + + + + 

+ + 
+ + + + 

+ + + + + + + 

+ + + + + + + 

(a) 

(b) 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

E = 0 

+ 

E 

E 

A 

A 
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� Consider a section of small surface area A of conductor with 
excess +ve charge

� Gaussian surface is a cylinder perpendicular to the conductor’s 
surface

� One end cap is fully inside the conductor, 
the other is fully outside

� E  outside the conductor is perpendicular to its surface

� Φ1 (through the inner end of cylinder) = 0 
� Φ2 (through the curved surface of cylinder) = 0 
� Φ3 (through the outer end of cylinder) = EAcos0 = EA = qenc/ε0 

� σ = qenc/A à qen =σA
� à EA = σA/ε0

� à
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.

E #
$

"0

E
:

E
:

E
:

Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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+ + + + + + + 
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.

E #
$

"0

E
:

E
:

E
:

Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also
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be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.

E #
$

"0

E
:

E
:

E
:

Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:
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Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.

E #
$

"0

E
:

E
:

E
:

Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).

E
:

E "
$

2%#0r

E
:

E
:

E
:

E
:
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h 
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+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

2   r π 

Gaussian 
surface 

E 

There is flux only
through the
curved surface.

Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.

R

R/2

(a) (b)

+
+

+

+
+

+ +
+

+

+
+

+ +
+

Gaussian
surface __

_

_

_

_
_ _

_
_

_

_

_
_

charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.
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23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).

E
:

E "
$

2%#0r

E
:

E
:

E
:

E
:

r 

h 

λ + 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

2   r π 

Gaussian 
surface 

E 

There is flux only
through the
curved surface.

Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 615 61523-7 APPLYI NG GAUSS’ LAW: CYLI N DR ICAL SYM M ETRY
PART 3

HALLIDAY REVISED

Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.

E #
$

"0

E
:

E
:

E
:

Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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Electric field due to a charged plastic rod 

An infinite long cylindrical plastic rod with a uniform +ve linear charge 
density λ (λ = qenc/h)

� To find E at a distance r from the rod axis:
� We chose Gaussian surface as cylinder of radius r & length h
� At every point on the Gaussian surface, 

E directed radially outward
� à Φ through the cylindrical surface is: 

(qenc= λh)

� The area A of the cylindrical surface is 2πrh

61523-7 APPLYI NG GAUSS’ LAW: CYLI N DR ICAL SYM M ETRY
PART 3

HALLIDAY REVISED

Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
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y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
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% "
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 E
:

! dA
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 E
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E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.
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Additional examples, video, and practice available at WileyPLUS

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 607

61123-4 GAUSS’ LAW
PART 3

HALLIDAY REVISED

Sample Problem

through the surface, but as much enters as leaves and no
net flux is contributed. Thus, qenc is only the sum q1 ! q2 !
q3 and Eq. 23-6 gives us

(Answer)

The minus sign shows that the net flux through the surface is
inward and thus that the net charge within the surface is
negative.

 " #670 N $m2/C. 

 "
!3.1 % 10 #9 C # 5.9 % 10 #9 C # 3.1 % 10 #9 C

8.85 % 10 #12 C2/N $m2

& "
qenc

'0
"

q1 ! q2 ! q3

'0

Relating the net enclosed charge and the net flux

Figure 23-7 shows five charged lumps of plastic and an
electrically neutral coin.The cross section of a Gaussian sur-
face S is indicated. What is the net electric flux through the
surface if q1 " q4 " !3.1 nC, q2 " q5 " #5.9 nC, and q3 "
#3.1 nC?

Fig. 23-7 Five plastic objects, each with an electric charge, and
a coin, which has no net charge.A Gaussian surface, shown in
cross section, encloses three of the plastic objects and the coin.
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Sample Problem

, and we find
&bb " #16 N $ m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)

Thus, the cube encloses a net positive charge.

 " 2.1 % 10#10 C.
 qenc " '0& " (8.85 % 10#12 C2/N $m2)(24 N $m2/C)

 " 24 N $m2/C.
 & " (36 # 12 ! 16 # 16 ! 0 ! 0) N $m2/C

dA
:

E
:

" 3.0 xî ! 4.0 ĵ
dA

:
" #dAk̂

dA
:

" dAk̂

dA
:

" #dAĵ

Enclosed charge in a nonuniform field

What is the net charge enclosed by the Gaussian cube of
Fig. 23-5, which lies in the electric field ?
(E is in newtons per coulomb and x is in meters.)

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 ('0& " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (&r " 36 N $ m2/C), the left face (&l " #12
N $ m2/C), and the top face (&t " 16 N $ m2/C).

For the bottom face, our calculation is just like that for
the top face except that the differential area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

E
:

" 3.0 xî ! 4.0 ĵ

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

The net flux & through the surface depends on the net
charge qenc enclosed by surface S.

Calculation: The coin does not contribute to & because it
is neutral and thus contains equal amounts of positive and
negative charge. We could include those equal amounts,
but they would simply sum to be zero when we calculate
the net charge enclosed by the surface. So, let’s not bother.
Charges q4 and q5 do not contribute because they are out-
side surface S. They certainly send electric field lines
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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Examples: 
Q.4 If the electric field at 10cm from a long-straight wire is 20N/C, what is the 
electric field at 2cm from the wire is: 

At 10cm = 0.1m, 𝜆 = 2𝜋𝜀K(0.1)(20)

At 2cm=0.02m, 𝜆 = 2𝜋𝜀K(0.02)(E2)
𝜆 = 𝜆

à 2𝜋𝜀K(0.1)(20)=2𝜋𝜀K(0.02)(E2)
à E2 = 4.3×,4

.4,
=100N/C

𝐸 =
𝜆

2𝜋𝜀K𝑟
⟹ 𝜆 = 2𝜋𝜀K𝑟𝐸



Electric field between two oppositely 
charged conducting plates

� For a conducting plate with charge density σ, 
charges will distribute uniformly on the plate 
surfaces
à each surface of plate has 𝜎3 =

\
,

� If two conducting plates with same & opposite 
surface charges σ are placed parallel to each 
other 
� à all the excess charge moves onto the inner 

faces of the plates (due to attraction)
� The new surface charge density σ on each inner 

face is twice σ1

� The magnitude of E between the plates is

� The direction of E from +ve plate to –ve one
� Since no excess charge on the outer faces 

à E = 0 outside the plates 
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.
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Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
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There is flux only
through the
external end face.
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.
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Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also
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be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.
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Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also
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be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
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nal end cap of the cylinder, but not the inter-
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.

E #
$

"0

E
:

E
:

E
:

Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Q.5 Two parallel conducting plates carry equal but opposite surface charges of 
8.85 nC/m2. Calculate the electric field between them.

The electric field between the two oppositely charged 
conducting plate is 

𝐸 =
𝜎
𝜀4

=
8.85×100/

8.85×1003,
= 1000N/C

Q.6 Two parallel conducting plates carry equal surface charges of 8.85 nC/m2. 
Calculate the electric field between them.

The direction of both electric field opposes the other

àE = E+ - E+ = 0

𝜎 − 𝜎

→
E

𝜎 𝜎

Examples:



A thin infinite, nonconducting (or conducting) sheet 
with a uniform + σ (σ = qenc/A) 

To find E at distance r in front of the sheet:
� Gaussian surface is a closed cylinder with end 

caps of area A, perpendicular the sheet 
� àE is perpendicular to the end caps and in 

outward direction

à

� Because the distance from each flat end of the 
cylinder to the plane does not appear 
àE /2 𝜀0 at any distance from the plane
àthe field is uniform everywhere 

61723-8 APPLYI NG GAUSS’ LAW: PLANAR SYM M ETRY
PART 3

HALLIDAY REVISED

23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 617

61723-8 APPLYI NG GAUSS’ LAW: PLANAR SYM M ETRY
PART 3

HALLIDAY REVISED

23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Sample Problem

(b) Figure 21-8c is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! "3.20 # 10"19 C and is at a distance from
particle 1. What is the net electrostatic force on particle
1 due to particles 2 and 3?

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force still acts onF

:
12

F
:

1,net

3
4 R

Finding the net force due to two other particles

(a) Figure 21-8a shows two positively charged particles fixed in
place on an xaxis.The charges are q1 ! 1.60 # 10"19 C and q2 !
3.20 # 10"19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 # 10"24 N and 180°. (Answer)

We can also write in unit-vector notation as

. (Answer)F
:

12 ! "(1.15 # 10 "24 N)î

F
:

12

F
:

12

 ! 1.15 # 10 "24 N.

  #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(0.0200 m)2

 ! (8.99 # 10 9 N $m2/C2)

 F12 !
1

4%&0
 

!q1!!q2!
R2

F
:

12

F
:

12
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R
x

q2q1

(a)

x
(b)

F12

R3__
4

x
q2q3q1

(c)

x
(d)

F12 F13

This is the first
arrangement.

This is the second
arrangement.

This is the third
arrangement.

This is the particle
of interest.

This is still the
particle of interest.

It is pushed away
from particle 2.

It is pushed away
from particle 2.

It is pulled toward
particle 3.

It is pushed away
from particle 2.

It is pulled toward
particle 4.

This is still the
particle of interest.

x

y

q2q1

q4

3__
4 R

(e)

( f )

θ

x

y

θF12

F14

Fig. 21-8 (a)
Two charged parti-
cles of charges q1

and q2 are fixed in
place on an x axis.
(b) The free-body
diagram for particle
1, showing the elec-
trostatic force on it
from particle 2. (c)
Particle 3 included.
(d) Free-body dia-
gram for particle 1.
(e) Particle 4
included. (f ) Free-
body diagram for
particle 1.

particle 1. Similarly, the force that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force is di-
rected toward particle 3, as indicated in the free-body dia-
gram of Fig. 21-8d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

F
:

13 ! (2.05 # 10 "24 N)î .

F
:

13

  ! 2.05 # 10 "24 N.

 #
(1.60 # 10 "19 C)(3.20 # 10 "19 C)

(3
4)

2(0.0200 m)2

  ! (8.99 # 10 9 N $m2/C2)

F13 !
1

4%&0
 

!q1!!q3!

(3
4R)2

F
:

13

F
:

13

F
:

13

A
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Fig. 23-17 (a) Two large, paral-
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (c) The net field
due to both charged sheets, found
by superposition.

Because the charges on the plates moved when we brought the plates close
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the
charge distribution of the two-plate system is not merely the sum of the charge
distributions of the individual plates.

You may wonder why we discuss such seemingly unrealistic situations as the
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of
infinite plates of charge. One reason is that analyzing such situations with Gauss’
law is easy. More important is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a
finite nonconducting sheet as long as we are dealing with points close to the sheet
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct-
ing plates as long as we consider points that are not too close to their edges.

The trouble with the edges of a sheet or a plate, and the reason we take care
not to deal with them, is that near an edge we can no longer use planar symmetry to
find expressions for the fields. In fact, the field lines there are curved (said to be an
edge effect or fringing), and the fields can be very difficult to express algebraically.

Sample Problem

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(!) is larger than E("), the net electric field in this
region is directed to the left, as Fig. 23-17c shows.To the right of
the sheets, the electric field  has the same magnitude but is di-
rected to the right,as Fig.23-17c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

# 6.3 $ 10 5 N/C.
# 3.84 $ 10 5 N/C ! 2.43 $ 10 5 N/C

EB # E(!) ! E(")

E
:

L

# 1.4 $ 10 5 N/C.
# 3.84 $ 10 5 N/C " 2.43 $ 10 5 N/C

EL # E(!) " E(")

 #  2.43 $ 10 5 N/C.

E(") #
%(")

2&0
#

4.3 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(")

Electric field near two parallel charged metal plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(!) # 6.8 mC/m2 for the positively charged sheet and s(") #
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude

 #  3.84 $ 10 5 N/C.

E(!) #
%(!)

2&0
#

6.8 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(!)

E
:
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The exact definition of the flux of the electric field through a closed surface is
found by allowing the area of the squares shown in Fig. 23-3 to become smaller
and smaller, approaching a differential limit dA. The area vectors then approach
a differential limit .The sum of Eq. 23-3 then becomes an integral:

(electric flux through a Gaussian surface). (23-4)

The loop on the integral sign indicates that the integration is to be taken over the
entire (closed) surface.The flux of the electric field is a scalar, and its SI unit is the
newton–square-meter per coulomb (N ! m2/C).

We can interpret Eq. 23-4 in the following way: First recall that we can use
the density of electric field lines passing through an area as a proportional mea-
sure of the magnitude of the electric field there. Specifically, the magnitude E is
proportional to the number of electric field lines per unit area. Thus, the scalar
product in Eq. 23-4 is proportional to the number of electric field lines
passing through area . Then, because the integration in Eq. 23-4 is carried out
over a Gaussian surface, which is closed, we see that

dA
:

E
:

! dA
:

E
:

" # ! E
:

! dA
:

dA
:

The electric flux " through a Gaussian surface is proportional to the net number of
electric field lines passing through that surface.

CHECKPOINT 1

The figure here shows a Gaussian cube
of face area A immersed in a uniform
electric field that has the positive
direction of the z axis. In terms of E
and A, what is the flux through (a) the
front face (which is in the xy plane),
(b) the rear face, (c) the top face, and
(d) the whole cube?

E
:

y

x

z

A

E

Sample Problem

right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90° at
all points,

Substituting these results into Eq. 23-5 leads us to

" # $ EA % 0 % EA # 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

# " E(cos 90&) dA # 0.

"
c

 E
:

! dA
:

# " E(cos 0) dA # EA.

' #

Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field ,
with the cylinder axis parallel to the field. What is the flux
" of the electric field through this closed surface?

We can find the flux " through the Gaussian surface by inte-
grating the scalar product over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c.Thus, from Eq.23-4,

(23-5)

For all points on the left cap, the angle u between and
is 180° and the magnitude E of the field is uniform.Thus,

where gives the cap’s area A (# pR2). Similarly, for the" dA

"
a

 E
:

! dA
:

# " E(cos 180&) dA # $ E " dA # $ EA,

dA
:

E
:

# "
a

 E
:

! dA
:

% "
b

 E
:

! dA
:

% "
c

 E
:

! dA
:

.

" # ! E
:

! dA
:

E
:

! dA
:

E
:

KEY I DEA

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian
surface

θ

a c

θ

b

dA

dA
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E
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Fig. 23-17 (a) Two large, paral-
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (c) The net field
due to both charged sheets, found
by superposition.

Because the charges on the plates moved when we brought the plates close
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the
charge distribution of the two-plate system is not merely the sum of the charge
distributions of the individual plates.

You may wonder why we discuss such seemingly unrealistic situations as the
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of
infinite plates of charge. One reason is that analyzing such situations with Gauss’
law is easy. More important is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a
finite nonconducting sheet as long as we are dealing with points close to the sheet
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct-
ing plates as long as we consider points that are not too close to their edges.

The trouble with the edges of a sheet or a plate, and the reason we take care
not to deal with them, is that near an edge we can no longer use planar symmetry to
find expressions for the fields. In fact, the field lines there are curved (said to be an
edge effect or fringing), and the fields can be very difficult to express algebraically.

Sample Problem

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(!) is larger than E("), the net electric field in this
region is directed to the left, as Fig. 23-17c shows.To the right of
the sheets, the electric field  has the same magnitude but is di-
rected to the right,as Fig.23-17c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

# 6.3 $ 10 5 N/C.
# 3.84 $ 10 5 N/C ! 2.43 $ 10 5 N/C

EB # E(!) ! E(")

E
:

L

# 1.4 $ 10 5 N/C.
# 3.84 $ 10 5 N/C " 2.43 $ 10 5 N/C

EL # E(!) " E(")

 #  2.43 $ 10 5 N/C.

E(") #
%(")

2&0
#

4.3 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(")

Electric field near two parallel charged metal plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(!) # 6.8 mC/m2 for the positively charged sheet and s(") #
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude

 #  3.84 $ 10 5 N/C.

E(!) #
%(!)

2&0
#

6.8 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(!)

E
:
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Fig. 23-17 (a) Two large, paral-
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (c) The net field
due to both charged sheets, found
by superposition.

Because the charges on the plates moved when we brought the plates close
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the
charge distribution of the two-plate system is not merely the sum of the charge
distributions of the individual plates.

You may wonder why we discuss such seemingly unrealistic situations as the
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of
infinite plates of charge. One reason is that analyzing such situations with Gauss’
law is easy. More important is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a
finite nonconducting sheet as long as we are dealing with points close to the sheet
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct-
ing plates as long as we consider points that are not too close to their edges.

The trouble with the edges of a sheet or a plate, and the reason we take care
not to deal with them, is that near an edge we can no longer use planar symmetry to
find expressions for the fields. In fact, the field lines there are curved (said to be an
edge effect or fringing), and the fields can be very difficult to express algebraically.

Sample Problem

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(!) is larger than E("), the net electric field in this
region is directed to the left, as Fig. 23-17c shows.To the right of
the sheets, the electric field  has the same magnitude but is di-
rected to the right,as Fig.23-17c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

# 6.3 $ 10 5 N/C.
# 3.84 $ 10 5 N/C ! 2.43 $ 10 5 N/C

EB # E(!) ! E(")

E
:

L

# 1.4 $ 10 5 N/C.
# 3.84 $ 10 5 N/C " 2.43 $ 10 5 N/C

EL # E(!) " E(")

 #  2.43 $ 10 5 N/C.

E(") #
%(")

2&0
#

4.3 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(")

Electric field near two parallel charged metal plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(!) # 6.8 mC/m2 for the positively charged sheet and s(") #
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude

 #  3.84 $ 10 5 N/C.

E(!) #
%(!)

2&0
#

6.8 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(!)

E
:
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Fig. 23-17 (a) Two large, paral-
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (c) The net field
due to both charged sheets, found
by superposition.

Because the charges on the plates moved when we brought the plates close
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the
charge distribution of the two-plate system is not merely the sum of the charge
distributions of the individual plates.

You may wonder why we discuss such seemingly unrealistic situations as the
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of
infinite plates of charge. One reason is that analyzing such situations with Gauss’
law is easy. More important is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a
finite nonconducting sheet as long as we are dealing with points close to the sheet
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct-
ing plates as long as we consider points that are not too close to their edges.

The trouble with the edges of a sheet or a plate, and the reason we take care
not to deal with them, is that near an edge we can no longer use planar symmetry to
find expressions for the fields. In fact, the field lines there are curved (said to be an
edge effect or fringing), and the fields can be very difficult to express algebraically.

Sample Problem

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(!) is larger than E("), the net electric field in this
region is directed to the left, as Fig. 23-17c shows.To the right of
the sheets, the electric field  has the same magnitude but is di-
rected to the right,as Fig.23-17c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

# 6.3 $ 10 5 N/C.
# 3.84 $ 10 5 N/C ! 2.43 $ 10 5 N/C

EB # E(!) ! E(")

E
:

L

# 1.4 $ 10 5 N/C.
# 3.84 $ 10 5 N/C " 2.43 $ 10 5 N/C

EL # E(!) " E(")

 #  2.43 $ 10 5 N/C.

E(") #
%(")

2&0
#

4.3 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(")

Electric field near two parallel charged metal plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(!) # 6.8 mC/m2 for the positively charged sheet and s(") #
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude

 #  3.84 $ 10 5 N/C.

E(!) #
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Fig. 23-17 (a) Two large, paral-
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (c) The net field
due to both charged sheets, found
by superposition.

Because the charges on the plates moved when we brought the plates close
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the
charge distribution of the two-plate system is not merely the sum of the charge
distributions of the individual plates.

You may wonder why we discuss such seemingly unrealistic situations as the
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of
infinite plates of charge. One reason is that analyzing such situations with Gauss’
law is easy. More important is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a
finite nonconducting sheet as long as we are dealing with points close to the sheet
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct-
ing plates as long as we consider points that are not too close to their edges.

The trouble with the edges of a sheet or a plate, and the reason we take care
not to deal with them, is that near an edge we can no longer use planar symmetry to
find expressions for the fields. In fact, the field lines there are curved (said to be an
edge effect or fringing), and the fields can be very difficult to express algebraically.

Sample Problem

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(!) is larger than E("), the net electric field in this
region is directed to the left, as Fig. 23-17c shows.To the right of
the sheets, the electric field  has the same magnitude but is di-
rected to the right,as Fig.23-17c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

# 6.3 $ 10 5 N/C.
# 3.84 $ 10 5 N/C ! 2.43 $ 10 5 N/C

EB # E(!) ! E(")

E
:

L

# 1.4 $ 10 5 N/C.
# 3.84 $ 10 5 N/C " 2.43 $ 10 5 N/C

EL # E(!) " E(")

 #  2.43 $ 10 5 N/C.

E(") #
%(")

2&0
#

4.3 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(")

Electric field near two parallel charged metal plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(!) # 6.8 mC/m2 for the positively charged sheet and s(") #
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude

 #  3.84 $ 10 5 N/C.

E(!) #
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Fig. 23-17 (a) Two large, paral-
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (c) The net field
due to both charged sheets, found
by superposition.

Because the charges on the plates moved when we brought the plates close
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the
charge distribution of the two-plate system is not merely the sum of the charge
distributions of the individual plates.

You may wonder why we discuss such seemingly unrealistic situations as the
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of
infinite plates of charge. One reason is that analyzing such situations with Gauss’
law is easy. More important is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a
finite nonconducting sheet as long as we are dealing with points close to the sheet
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct-
ing plates as long as we consider points that are not too close to their edges.

The trouble with the edges of a sheet or a plate, and the reason we take care
not to deal with them, is that near an edge we can no longer use planar symmetry to
find expressions for the fields. In fact, the field lines there are curved (said to be an
edge effect or fringing), and the fields can be very difficult to express algebraically.

Sample Problem

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(!) is larger than E("), the net electric field in this
region is directed to the left, as Fig. 23-17c shows.To the right of
the sheets, the electric field  has the same magnitude but is di-
rected to the right,as Fig.23-17c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

# 6.3 $ 10 5 N/C.
# 3.84 $ 10 5 N/C ! 2.43 $ 10 5 N/C

EB # E(!) ! E(")

E
:

L

# 1.4 $ 10 5 N/C.
# 3.84 $ 10 5 N/C " 2.43 $ 10 5 N/C

EL # E(!) " E(")

 #  2.43 $ 10 5 N/C.

E(") #
%(")

2&0
#

4.3 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:
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Electric field near two parallel charged metal plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(!) # 6.8 mC/m2 for the positively charged sheet and s(") #
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude

 #  3.84 $ 10 5 N/C.
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Fig. 23-17 (a) Two large, paral-
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (c) The net field
due to both charged sheets, found
by superposition.

Because the charges on the plates moved when we brought the plates close
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the
charge distribution of the two-plate system is not merely the sum of the charge
distributions of the individual plates.

You may wonder why we discuss such seemingly unrealistic situations as the
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of
infinite plates of charge. One reason is that analyzing such situations with Gauss’
law is easy. More important is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a
finite nonconducting sheet as long as we are dealing with points close to the sheet
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct-
ing plates as long as we consider points that are not too close to their edges.

The trouble with the edges of a sheet or a plate, and the reason we take care
not to deal with them, is that near an edge we can no longer use planar symmetry to
find expressions for the fields. In fact, the field lines there are curved (said to be an
edge effect or fringing), and the fields can be very difficult to express algebraically.

Sample Problem

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(!) is larger than E("), the net electric field in this
region is directed to the left, as Fig. 23-17c shows.To the right of
the sheets, the electric field  has the same magnitude but is di-
rected to the right,as Fig.23-17c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

# 6.3 $ 10 5 N/C.
# 3.84 $ 10 5 N/C ! 2.43 $ 10 5 N/C

EB # E(!) ! E(")

E
:

L

# 1.4 $ 10 5 N/C.
# 3.84 $ 10 5 N/C " 2.43 $ 10 5 N/C

EL # E(!) " E(")

 #  2.43 $ 10 5 N/C.

E(") #
%(")

2&0
#

4.3 $ 10 "6 C/m2
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Electric field near two parallel charged metal plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(!) # 6.8 mC/m2 for the positively charged sheet and s(") #
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude
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Fig. 23-17 (a) Two large, paral-
lel sheets, uniformly charged on
one side. (b) The individual elec-
tric fields resulting from the two
charged sheets. (c) The net field
due to both charged sheets, found
by superposition.

Because the charges on the plates moved when we brought the plates close
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the
charge distribution of the two-plate system is not merely the sum of the charge
distributions of the individual plates.

You may wonder why we discuss such seemingly unrealistic situations as the
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of
infinite plates of charge. One reason is that analyzing such situations with Gauss’
law is easy. More important is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a
finite nonconducting sheet as long as we are dealing with points close to the sheet
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct-
ing plates as long as we consider points that are not too close to their edges.

The trouble with the edges of a sheet or a plate, and the reason we take care
not to deal with them, is that near an edge we can no longer use planar symmetry to
find expressions for the fields. In fact, the field lines there are curved (said to be an
edge effect or fringing), and the fields can be very difficult to express algebraically.

Sample Problem

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(!) is larger than E("), the net electric field in this
region is directed to the left, as Fig. 23-17c shows.To the right of
the sheets, the electric field  has the same magnitude but is di-
rected to the right,as Fig.23-17c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

# 6.3 $ 10 5 N/C.
# 3.84 $ 10 5 N/C ! 2.43 $ 10 5 N/C

EB # E(!) ! E(")

E
:

L

# 1.4 $ 10 5 N/C.
# 3.84 $ 10 5 N/C " 2.43 $ 10 5 N/C

EL # E(!) " E(")

 #  2.43 $ 10 5 N/C.

E(") #
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Electric field near two parallel charged metal plates

Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(!) # 6.8 mC/m2 for the positively charged sheet and s(") #
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude
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%(!)

2&0
#

6.8 $ 10 "6 C/m2

(2)(8.85 $ 10 "12 C2/N 'm2)

E
:

(!)

E
:

KEY I DEA

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 618



Q.7 Two parallel conducting sheets carry equal but opposite surface charges of 
8.85 nC/m2. Calculate the electric field between them.

The electric field due to conducting sheet is 
𝐸 =

𝜎
2𝜀4

The direction of both electric field are the same

à𝐸 = 𝐸b + 𝐸0 =
,\
,*d

= 1.1-×345e

1.1-×34578
= 1000N/C

Q.8 Two parallel conducting sheets carry equal surface charges of 8.85 nC/m2. 
Calculate the electric field between them.

𝐸 = \
,*d

Type equation here.The direction of both electric field opposes the other

àE = E+ - E- = 0

𝜎 − 𝜎

→ E+

→ E_

𝜎 𝜎

→E+

←E+

Examples:



Q.9 Two parallel nonconducting sheets carry equal but opposite surface charges 
of 8.85 nC/m2. calculate the electric field between them.

The electric field due to nonconducting sheet is 
𝐸 =

𝜎
2𝜀4

The direction of both electric field are the same

à𝐸 = 𝐸b + 𝐸0 =
,\
,*d

= 1.1-×345e

1.1-×34578
= 1000N/C

Q.10 An electron is placed near to a nonconducting sheet carrying a surface 
charge density of 17.7nC/m2. Calculate the electronic force acting on the 
electron.

𝐸 =
𝜎
2𝜀4

==
17.7×100/

2×8.85×1003, = 1000N/C

𝐹 = 𝑒𝐸 = 1.6×1003/×1000 = 1.6×1003<𝑁

𝜎 − 𝜎

àE+

àE_

Examples:



Electric field due to a charged metallic sphere or shell

� Applying Gauss’ law to surface S, for which r ≥R 

� Applying Gauss’ law to surface S, for which r < R

61923-9 APPLYI NG GAUSS’ LAW: S PH E R ICAL SYM M ETRY
PART 3

HALLIDAY REVISED

23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

r 
R 

S1 

q 

S2 

Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:

!charge enclosed by
sphere of radius r "

!volume enclosed by
sphere of radius r "

#
full charge
full volume

E #
1

4'(0
 
q%

r 2

E #
1

4'(0
 

q
r 2

Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).

r 

R 

ρ 

r 

R 

Gaussian 
surface 

Gaussian 
surface 

Enclosed 
charge is q' 

Enclosed 
charge is q 

(a) 

(b) The flux through the
surface depends on
only the enclosed
charge.
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.
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Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.
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Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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Example 24.6 The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the
electric field at points

(A) outside and

(B) inside the shell.

Solution

(A) The calculation for the field outside the shell is identical
to that for the solid sphere shown in Example 24.5a. If we
construct a spherical gaussian surface of radius r ! a concen-
tric with the shell (Fig. 24.13b), the charge inside this surface
is Q. Therefore, the field at a point outside the shell is equiv-
alent to that due to a point charge Q located at the center:

(B) The electric field inside the spherical shell is zero. This
follows from Gauss’s law applied to a spherical surface of
radius r " a concentric with the shell (Fig. 24.13c). Because of
the spherical symmetry of the charge distribution and
because the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s
law shows that E # 0 in the region r " a. We obtain the
same results using Equation 23.11 and integrating over the
charge distribution. This calculation is rather complicated.
Gauss’s law allows us to determine these results in a much
simpler way.

  (for r ! a)ke  
Q
r  

2E #

Example 24.7 A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit
length $ (Fig. 24.14a).

Solution The symmetry of the charge distribution
requires that E be perpendicular to the line charge and
directed outward, as shown in Figure 24.14a and b. To
reflect the symmetry of the charge distribution, we select a
cylindrical gaussian surface of radius r and length ! that is
coaxial with the line charge. For the curved part of this
surface, E is constant in magnitude and perpendicular to
the surface at each point—satisfaction of conditions
(1) and (2). Furthermore, the flux through the ends of
the gaussian cylinder is zero because E is parallel to
these surfaces—the first application we have seen of
condition (3).

We take the surface integral in Gauss’s law over the
entire gaussian surface. Because of the zero value of E % dA
for the ends of the cylinder, however, we can restrict our
attention to only the curved surface of the cylinder.

The total charge inside our gaussian surface is $!.
Applying Gauss’s law and conditions (1) and (2), we find
that for the curved surface

The area of the curved surface is A # 2&r!; therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically
symmetric charge distribution varies as 1/r, whereas the
field external to a spherically symmetric charge distribution
varies as 1/r 2. Equation 24.7 was also derived by integra-
tion of the field of a point charge. (See Problem 35 in 
Chapter 23.)
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Figure 24.13 (Example 24.6) (a) The electric field inside a uniformly charged
spherical shell is zero. The field outside is the same as that due to a point charge Q
located at the center of the shell. (b) Gaussian surface for r ! a. (c) Gaussian surface
for r " a.
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Example 24.6 The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the
electric field at points

(A) outside and

(B) inside the shell.

Solution

(A) The calculation for the field outside the shell is identical
to that for the solid sphere shown in Example 24.5a. If we
construct a spherical gaussian surface of radius r ! a concen-
tric with the shell (Fig. 24.13b), the charge inside this surface
is Q. Therefore, the field at a point outside the shell is equiv-
alent to that due to a point charge Q located at the center:

(B) The electric field inside the spherical shell is zero. This
follows from Gauss’s law applied to a spherical surface of
radius r " a concentric with the shell (Fig. 24.13c). Because of
the spherical symmetry of the charge distribution and
because the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s
law shows that E # 0 in the region r " a. We obtain the
same results using Equation 23.11 and integrating over the
charge distribution. This calculation is rather complicated.
Gauss’s law allows us to determine these results in a much
simpler way.

  (for r ! a)ke  
Q
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Example 24.7 A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit
length $ (Fig. 24.14a).

Solution The symmetry of the charge distribution
requires that E be perpendicular to the line charge and
directed outward, as shown in Figure 24.14a and b. To
reflect the symmetry of the charge distribution, we select a
cylindrical gaussian surface of radius r and length ! that is
coaxial with the line charge. For the curved part of this
surface, E is constant in magnitude and perpendicular to
the surface at each point—satisfaction of conditions
(1) and (2). Furthermore, the flux through the ends of
the gaussian cylinder is zero because E is parallel to
these surfaces—the first application we have seen of
condition (3).

We take the surface integral in Gauss’s law over the
entire gaussian surface. Because of the zero value of E % dA
for the ends of the cylinder, however, we can restrict our
attention to only the curved surface of the cylinder.

The total charge inside our gaussian surface is $!.
Applying Gauss’s law and conditions (1) and (2), we find
that for the curved surface

The area of the curved surface is A # 2&r!; therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically
symmetric charge distribution varies as 1/r, whereas the
field external to a spherically symmetric charge distribution
varies as 1/r 2. Equation 24.7 was also derived by integra-
tion of the field of a point charge. (See Problem 35 in 
Chapter 23.)
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Figure 24.13 (Example 24.6) (a) The electric field inside a uniformly charged
spherical shell is zero. The field outside is the same as that due to a point charge Q
located at the center of the shell. (b) Gaussian surface for r ! a. (c) Gaussian surface
for r " a.
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Example 24.6 The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the
electric field at points

(A) outside and

(B) inside the shell.

Solution

(A) The calculation for the field outside the shell is identical
to that for the solid sphere shown in Example 24.5a. If we
construct a spherical gaussian surface of radius r ! a concen-
tric with the shell (Fig. 24.13b), the charge inside this surface
is Q. Therefore, the field at a point outside the shell is equiv-
alent to that due to a point charge Q located at the center:

(B) The electric field inside the spherical shell is zero. This
follows from Gauss’s law applied to a spherical surface of
radius r " a concentric with the shell (Fig. 24.13c). Because of
the spherical symmetry of the charge distribution and
because the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s
law shows that E # 0 in the region r " a. We obtain the
same results using Equation 23.11 and integrating over the
charge distribution. This calculation is rather complicated.
Gauss’s law allows us to determine these results in a much
simpler way.

  (for r ! a)ke  
Q
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2E #

Example 24.7 A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit
length $ (Fig. 24.14a).

Solution The symmetry of the charge distribution
requires that E be perpendicular to the line charge and
directed outward, as shown in Figure 24.14a and b. To
reflect the symmetry of the charge distribution, we select a
cylindrical gaussian surface of radius r and length ! that is
coaxial with the line charge. For the curved part of this
surface, E is constant in magnitude and perpendicular to
the surface at each point—satisfaction of conditions
(1) and (2). Furthermore, the flux through the ends of
the gaussian cylinder is zero because E is parallel to
these surfaces—the first application we have seen of
condition (3).

We take the surface integral in Gauss’s law over the
entire gaussian surface. Because of the zero value of E % dA
for the ends of the cylinder, however, we can restrict our
attention to only the curved surface of the cylinder.

The total charge inside our gaussian surface is $!.
Applying Gauss’s law and conditions (1) and (2), we find
that for the curved surface

The area of the curved surface is A # 2&r!; therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically
symmetric charge distribution varies as 1/r, whereas the
field external to a spherically symmetric charge distribution
varies as 1/r 2. Equation 24.7 was also derived by integra-
tion of the field of a point charge. (See Problem 35 in 
Chapter 23.)
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Figure 24.13 (Example 24.6) (a) The electric field inside a uniformly charged
spherical shell is zero. The field outside is the same as that due to a point charge Q
located at the center of the shell. (b) Gaussian surface for r ! a. (c) Gaussian surface
for r " a.
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Q.11 A metallic sphere of radius  R = 5cm carrying a charge of 5 𝝁𝐂. Calculate 
the magnitude of the electric field at 
(i) r = 3cm 
(ii) r = 10cm from the center.

(i) At 3cm from the center:
àinside the sphere
àqenc=0
àE=0

(ii) At 10cm from the center:
àoutside the sphere

𝐸 =
𝑞

4𝜋𝜀K𝑟,
=

5×100<

4(3.14)(8.85×1003,)(0.10),
= 4.49 × 10<𝑁/𝐶

q

r

R

q

r

R



� If the entire charge lies within a Gaussian surface with r > R
� àE is produces on the Gaussian surface as if the charge 

were a point charge located at the center
� à

� If  a Gaussian surface with r < R & the enclosed charge q’
� à

� à E inside a uniform sphere of charge is directed radially and has magnitude
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

r 
R 

S1 

q 

S2 

Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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(b) The flux through the
surface depends on
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

r 
R 

S1 

q 

S2 

Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,
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section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2
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Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:

!charge enclosed by
sphere of radius r "

!volume enclosed by
sphere of radius r "

#
full charge
full volume

E #
1

4'(0
 
q%

r 2

E #
1

4'(0
 

q
r 2

Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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surface depends on
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Gauss’ Law Gauss’ law and Coulomb’s law are different ways
of describing the relation between charge and electric field in static
situations. Gauss’ law is

!0" # qenc (Gauss’ law), (23-6)

in which qenc is the net charge inside an imaginary closed surface (a
Gaussian surface) and " is the net fluxof the electric field through
the surface:

(23-4)

Coulomb’s law can be derived from Gauss’ law.

Applications of Gauss’ Law Using Gauss’ law and, in some
cases, symmetry arguments, we can derive several important
results in electrostatic situations.Among these are:
1. An excess charge on an isolated conductor is located entirely on

the outer surface of the conductor.

2. The external electric field near the surface of a charged conductor
is perpendicular to the surface and has magnitude

(conducting surface). (23-11)

Within the conductor, E # 0.

3. The electric field at any point due to an infinite line of charge
with uniform linear charge density l is perpendicular to the line
of charge and has magnitude

E #
$

!0

(electric flux through a
Gaussian surface)." # !  E

:
! dA

:

(line of charge), (23-12)

where r is the perpendicular distance from the line of charge to
the point.

4. The electric field due to an infinite nonconducting sheet with
uniform surface charge density s is perpendicular to the plane
of the sheet and has magnitude

(sheet of charge). (23-13)

5. The electric field outside a spherical shell of charge with radius R and
total charge q is directed radially and has magnitude

(spherical shell, for r % R). (23-15)

Here r is the distance from the center of the shell to the point at
which E is measured. (The charge behaves, for external points, as if
it were all located at the center of the sphere.) The field inside a
uniform spherical shell of charge is exactly zero:

E # 0 (spherical shell, for r & R). (23-16)

6. The electric field inside a uniform sphere of charge is directed
radially and has magnitude

(23-20)E # " q
4'!0R3 # 

r.

E #
1

4'!0
 

q
r 2

E #
$

2!0

E #
(

2'!0r

or (23-18)

This gives us
(23-19)

Substituting this into Eq. 23-17 yields

(uniform charge, field at r ) R). (23-20)E # " q
4'!0R3 #r

q* # q 
r 3

R3 .

q*
4
3'r3 #

q
4
3'R3 .

CHECKPOINT 4

The figure shows two large, parallel, nonconducting sheets with identical (positive) uni-
form surface charge densities, and a sphere with a uniform (positive) volume charge
density. Rank the four numbered points according to the magnitude of the net electric
field there, greatest first.
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the point.
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Example 24.5 A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume
charge density ! and carries a total positive charge Q (Fig.
24.11).

(A) Calculate the magnitude of the electric field at a point
outside the sphere.

Solution Because the charge distribution is spherically sym-
metric, we again select a spherical gaussian surface of radius
r, concentric with the sphere, as shown in Figure 24.11a. For
this choice, conditions (1) and (2) are satisfied, as they were
for the point charge in Example 24.4. Following the line of
reasoning given in Example 24.4, we find that

Note that this result is identical to the one we obtained for a
point charge. Therefore, we conclude that, for a uniformly
charged sphere, the field in the region external to the
sphere is equivalent to that of a point charge located at
the center of the sphere.

(B) Find the magnitude of the electric field at a point inside
the sphere.

Solution In this case we select a spherical gaussian surface
having radius r " a, concentric with the insulating sphere
(Fig. 24.11b). Let us denote the volume of this smaller
sphere by V #. To apply Gauss’s law in this situation, it is
important to recognize that the charge q in within the gauss-
ian surface of volume V # is less than Q. To calculate q in, we
use the fact that q in $ !V #:

By symmetry, the magnitude of the electric field is
constant everywhere on the spherical gaussian surface and
is normal to the surface at each point — both conditions

q in $ !V # $ ! (4
3  

% r  
3 )

  (for r & a)ke  
Q
r 

2(1)   E $

(1) and (2) are satisfied. Therefore, Gauss’s law in the
region r " a gives

Solving for E gives

Because by definition and because ke $ 1/4%'0,
this expression for E can be written as

Note that this result for E differs from the one we
obtained in part (A). It shows that E : 0 as r : 0.
Therefore, the result eliminates the problem that would
exist at r $ 0 if E varied as 1/r 2 inside the sphere as it does
outside the sphere. That is, if E ( 1/r 2 for r " a, the field
would be infinite at r $ 0, which is physically impossible.

What If? Suppose we approach the radial position r ! a
from inside the sphere and from outside. Do we measure the
same value of the electric field from both directions?

Answer From Equation (1), we see that the field
approaches a value from the outside given by

From the inside, Equation (2) gives us

Thus, the value of the field is the same as we approach the
surface from both directions. A plot of E versus r is shown in
Figure 24.12. Note that the magnitude of the field is contin-
uous, but the derivative of the field magnitude is not.

E $ lim
r : a !ke  

Q
a 

3   r" $ ke  
Q
a 

3  
 a $ ke  

Q
a 

2

E $ lim
r : a !ke  

Q
r 

2 " $ ke  
Q
a 

2

  (for r " a)ke  
Q
a 

3   r(2)   E $
Qr

4%'0a 
3 $

! $ Q /4
3  %a 3

E $
q in

4%'0r 
2 $

!(4
3 %r 

3 )
4%'0r 

2 $
!

3 '0
  r

#  E  dA $ E  # dA $ E (4%r 
2) $  

q in
'0

(a)

Gaussian
sphere

(b)

Gaussian
spherer

a

r

a

Figure 24.11 (Example 24.5) A uniformly charged insulating
sphere of radius a and total charge Q. (a) For points outside the
sphere, a large spherical gaussian surface is drawn concentric
with the sphere. In diagrams such as this, the dotted line
represents the intersection of the gaussian surface with the
plane of the page. (b) For points inside the sphere, a spherical
gaussian surface smaller than the sphere is drawn.

a

E

a r

E =
keQ
r2

E =
keQ
a 3 r

Figure 24.12 (Example 24.5) A plot of E versus r for a uniformly
charged insulating sphere. The electric field inside the sphere
(r " a) varies linearly with r. The field outside the sphere (r & a)
is the same as that of a point charge Q located at r $ 0.

At the Interactive Worked Example link at http://www.pse6.com, you can investigate the electric field inside and outside
the sphere.

Interactive

R
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for the point charge in Example 24.4. Following the line of
reasoning given in Example 24.4, we find that
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(B) Find the magnitude of the electric field at a point inside
the sphere.
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(Fig. 24.11b). Let us denote the volume of this smaller
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important to recognize that the charge q in within the gauss-
ian surface of volume V # is less than Q. To calculate q in, we
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(1) and (2) are satisfied. Therefore, Gauss’s law in the
region r " a gives

Solving for E gives

Because by definition and because ke $ 1/4%'0,
this expression for E can be written as

Note that this result for E differs from the one we
obtained in part (A). It shows that E : 0 as r : 0.
Therefore, the result eliminates the problem that would
exist at r $ 0 if E varied as 1/r 2 inside the sphere as it does
outside the sphere. That is, if E ( 1/r 2 for r " a, the field
would be infinite at r $ 0, which is physically impossible.

What If? Suppose we approach the radial position r ! a
from inside the sphere and from outside. Do we measure the
same value of the electric field from both directions?

Answer From Equation (1), we see that the field
approaches a value from the outside given by

From the inside, Equation (2) gives us

Thus, the value of the field is the same as we approach the
surface from both directions. A plot of E versus r is shown in
Figure 24.12. Note that the magnitude of the field is contin-
uous, but the derivative of the field magnitude is not.
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Figure 24.11 (Example 24.5) A uniformly charged insulating
sphere of radius a and total charge Q. (a) For points outside the
sphere, a large spherical gaussian surface is drawn concentric
with the sphere. In diagrams such as this, the dotted line
represents the intersection of the gaussian surface with the
plane of the page. (b) For points inside the sphere, a spherical
gaussian surface smaller than the sphere is drawn.
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Figure 24.12 (Example 24.5) A plot of E versus r for a uniformly
charged insulating sphere. The electric field inside the sphere
(r " a) varies linearly with r. The field outside the sphere (r & a)
is the same as that of a point charge Q located at r $ 0.

At the Interactive Worked Example link at http://www.pse6.com, you can investigate the electric field inside and outside
the sphere.

Interactive
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Q.12 A solid sphere of radius 5cm carrying a charge of q= 𝟓𝝁𝑪. Calculate the 
magnitude of the electric field at 
(i)  r = 3cm and 
(ii) r = 10cm from the center 

(i) At 3cm from the center:
àinside the sphere

à𝐸 = &
Cz*+{|

𝑟 = -×3456

C(E.3C)(1.1-×34578)(4.4-)|
×0.03 = 10.8×10<𝑁/𝐶

(i) At 10cm from the center:
àoutside the sphere

à𝐸 = &
Cz*+}8

= -×3456

C(E.3C)(1.1-×34578)(4.34)8

= 4.49 × 10<𝑁/𝐶

q

r

R

Examples:

q

r

R



Q.13 A charge of 𝒒𝟏 = 𝟐𝝁𝑪 is surrounded by a nonconducting sphere of radius 
5cm carrying a charge of  𝒒𝟐 = 𝟓𝝁𝑪. Calculate the magnitude of the electric 
field at 
(i)  r = 3cm and 
(ii) r = 10cm from the center.  

(i) At 3cm from the center:
àinside the sphere
à qenc= q1

à 𝐸 = &7
Cz*+}8

= ,×3456

C(E.3C)(1.1-×34578)(4.4E)8
= 19.9×10<𝑁/𝐶

(ii) At 10cm from the center:
à outside the sphere
à qenc= q1+q2

à𝐸 = &7b&8
Cz*+}8

= (,b-)×3456

C(E.3C)(1.1-×34578)(4.34)8
= 6.5×10<𝑁/𝐶

q2

r

Rq1

Examples:
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.

E !
2#1

"0
!

#

"0
.

E !
#

2"0

"0 (EA $ EA) ! #A,

"0  ! E
:

! dA
:

! qenc,

E
:

! dA
:

E
:

E
:

E
:

Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,
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where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.
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Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.
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Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A
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There is flux only
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

r 
R 

S1 

q 

S2 

Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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(b) The flux through the
surface depends on
only the enclosed
charge.
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.
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Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).

r 

R 

ρ 

r 

R 

Gaussian 
surface 

Gaussian 
surface 

Enclosed 
charge is q' 

Enclosed 
charge is q 

(a) 

(b) The flux through the
surface depends on
only the enclosed
charge.

halliday_c23_605-627v2.qxd  18-11-2009  15:34  Page 619

61923-9 APPLYI NG GAUSS’ LAW: S PH E R ICAL SYM M ETRY
PART 3

HALLIDAY REVISED

23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.
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Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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surface depends on
only the enclosed
charge.
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.
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! dA
:

E
:

E
:

E
:

Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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Fig. 23-12 A Gaussian surface in the
form of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindrical
plastic rod.

Additional examples, video, and practice available at WileyPLUS

23-7 Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with
a uniform positive linear charge density l. Let us find an expression for the mag-
nitude of the electric field at a distance r from the axis of the rod.

Our Gaussian surface should match the symmetry of the problem, which is
cylindrical.We choose a circular cylinder of radius r and length h, coaxial with the
rod. Because the Gaussian surface must be closed, we include two end caps as
part of the surface.

Imagine now that, while you are not watching, someone rotates the plastic rod
about its longitudinal axis or turns it end for end. When you look again at the rod,
you will not be able to detect any change.We conclude from this symmetry that the
only uniquely specified direction in this problem is along a radial line.Thus, at every
point on the cylindrical part of the Gaussian surface, must have the same magni-
tude E and (for a positively charged rod) must be directed radially outward.

Since 2pr is the cylinder’s circumference and h is its height, the area A of the
cylindrical surface is 2prh.The flux of through this cylindrical surface is then

! " EA cos u " E(2prh) cos 0 " E(2prh).

There is no flux through the end caps because , being radially directed, is paral-
lel to the end caps at every point.

The charge enclosed by the surface is lh, which means Gauss’ law,

#0! " qenc,

reduces to #0E(2prh) " lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outward
from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).
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There is flux only
through the
curved surface.

Fig. 23-11 (a) A negative point charge is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall
of the shell, and an equal amount of negative charge is uni-
formly distributed on the outer wall.
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charge of & 5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-11b. This distribution of negative charge is
uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall can-
not produce an electric field in the shell to affect the distrib-
ution of charge on the outer wall. Furthermore, these nega-
tive charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-11b. All the field lines intersect
the shell and the point charge perpendicularly. Inside the
shell the pattern of field lines is skewed because of the
skew of the positive charge distribution. Outside the shell
the pattern is the same as if the point charge were centered
and the shell were missing. In fact, this would be true no
matter where inside the shell the point charge happened to
be located.
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.

E #
$

"0

E
:

E
:

E
:

Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

r 
R 

S1 

q 

S2 

Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:

!charge enclosed by
sphere of radius r "

!volume enclosed by
sphere of radius r "

#
full charge
full volume

E #
1

4'(0
 

q%

r 2

E #
1

4'(0
 

q
r 2

Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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only the enclosed
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Gauss’ Law Gauss’ law and Coulomb’s law are different ways
of describing the relation between charge and electric field in static
situations. Gauss’ law is

!0" # qenc (Gauss’ law), (23-6)

in which qenc is the net charge inside an imaginary closed surface (a
Gaussian surface) and " is the net fluxof the electric field through
the surface:

(23-4)

Coulomb’s law can be derived from Gauss’ law.

Applications of Gauss’ Law Using Gauss’ law and, in some
cases, symmetry arguments, we can derive several important
results in electrostatic situations.Among these are:
1. An excess charge on an isolated conductor is located entirely on

the outer surface of the conductor.

2. The external electric field near the surface of a charged conductor
is perpendicular to the surface and has magnitude

(conducting surface). (23-11)

Within the conductor, E # 0.

3. The electric field at any point due to an infinite line of charge
with uniform linear charge density l is perpendicular to the line
of charge and has magnitude

E #
$

!0

(electric flux through a
Gaussian surface)." # !  E

:
! dA

:

(line of charge), (23-12)

where r is the perpendicular distance from the line of charge to
the point.

4. The electric field due to an infinite nonconducting sheet with
uniform surface charge density s is perpendicular to the plane
of the sheet and has magnitude

(sheet of charge). (23-13)

5. The electric field outside a spherical shell of charge with radius R and
total charge q is directed radially and has magnitude

(spherical shell, for r % R). (23-15)

Here r is the distance from the center of the shell to the point at
which E is measured. (The charge behaves, for external points, as if
it were all located at the center of the sphere.) The field inside a
uniform spherical shell of charge is exactly zero:

E # 0 (spherical shell, for r & R). (23-16)

6. The electric field inside a uniform sphere of charge is directed
radially and has magnitude

(23-20)E # " q
4'!0R3 # 

r.

E #
1

4'!0
 

q
r 2

E #
$

2!0

E #
(

2'!0r

or (23-18)

This gives us
(23-19)

Substituting this into Eq. 23-17 yields

(uniform charge, field at r ) R). (23-20)E # " q
4'!0R3 #r

q* # q 
r 3

R3 .

q*
4
3'r3 #

q
4
3'R3 .

CHECKPOINT 4

The figure shows two large, parallel, nonconducting sheets with identical (positive) uni-
form surface charge densities, and a sphere with a uniform (positive) volume charge
density. Rank the four numbered points according to the magnitude of the net electric
field there, greatest first.
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23-8 Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

Two Conducting Plates
Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Section 23-6 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E ! s1/"0 . Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-16b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-16c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.

E !
2#1

"0
!

#

"0
.

E !
#

2"0

"0 (EA $ EA) ! #A,

"0  ! E
:

! dA
:

! qenc,

E
:

! dA
:

E
:

E
:

E
:

Fig. 23-15 (a) Perspective view and (b)
side view of a portion of a very large, thin
plastic sheet, uniformly charged on one
side to surface charge density s.A closed
cylindrical Gaussian surface passes through
the sheet and is perpendicular to it.
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Fig. 23-16 (a) A thin, very large conduct-
ing plate with excess positive charge. (b) An
identical plate with excess negative charge.
(c) The two plates arranged so they are par-
allel and close.
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

r 
R 

S1 

q 

S2 

Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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23-9 Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Section 21-4:

A shell of uniform charge attracts or repels a charged particle that is outside the shell
as if all the shell’s charge were concentrated at the center of the shell.

If a charged particle is located inside a shell of uniform charge, there is no electrosta-
tic force on the particle from the shell. Fig. 23-18 A thin, uniformly charged,

spherical shell with total charge q, in cross
section.Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.

r 
R 

S1 

q 

S2 

Figure 23-18 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Section 23-5 as we applied Gauss’ law to surface S2, for which r ! R,we would find that

(spherical shell, field at r ! R). (23-15)

This field is the same as one set up by a point charge q at the center of the shell of
charge. Thus, the force produced by a shell of charge q on a charged particle
placed outside the shell is the same as the force produced by a point charge q
located at the center of the shell.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E # 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r $ R.
The charge produces an electric field on the Gaussian surface as if the charge
were a point charge located at the center, and Eq. 23-15 holds.

Figure 23-19b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we consider two sets of charged
shells — one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a
net electric field on the Gaussian surface. Equation 23-15 says that the charge
enclosed by the surface sets up an electric field as if that enclosed charge were
concentrated at the center. Letting q% represent that enclosed charge, we can
then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-19b is proportional to q:
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Fig. 23-19 The dots represent a spheri-
cally symmetric distribution of charge of
radius R, whose volume charge density r is
a function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be fixed
in position.A concentric spherical
Gaussian surface with r $ R is shown in
(a).A similar Gaussian surface with r " R
is shown in (b).
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to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is
fully outside, and the cylinder is perpendicular to the conductor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. If s is the charge per unit area, then qenc is equal to sA. When
we substitute sA for qenc and EA for !, Gauss’ law (Eq. 23-6) becomes

"0EA # sA,
from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor. If the charge on the conductor is
positive, the electric field is directed away from the conductor as in Fig. 23-10. It
is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-10 must terminate on negative charges somewhere in
the environment. If we bring those charges near the conductor, the charge density at
any given location on the conductor’s surface changes, and so does the magnitude of
the electric field. However, the relation between s and E is still given by Eq. 23-11.
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Sample Problem

Spherical metal shell, electric field and enclosed charge

Figure 23-11a shows a cross section of a spherical metal
shell of inner radius R. A point charge of % 5.0 mC is located
at a distance R/2 from the center of the shell. If the shell is
electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

Figure 23-11b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also

KEY I DEAS

be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a point charge of % 5.0 mC within the
shell, a charge of & 5.0 mC must lie on the inner wall of the
shell in order that the net enclosed charge be zero. If the
point charge were centered, this positive charge would be
uniformly distributed along the inner wall. However, since
the point charge is off-center, the distribution of positive
charge is skewed, as suggested by Fig. 23-11b, because the
positive charge tends to collect on the section of the inner
wall nearest the (negative) point charge.

Because the shell is electrically neutral, its inner wall
can have a charge of & 5.0 mC only if electrons, with a total

Fig. 23-10 (a) Perspective view and (b)
side view of a tiny portion of a large, iso-
lated conductor with excess positive charge
on its surface.A (closed) cylindrical
Gaussian surface, embedded perpendicu-
larly in the conductor, encloses some of the
charge. Electric field lines pierce the exter-
nal end cap of the cylinder, but not the inter-
nal end cap.The external end cap has area A
and area vector A

:
.

There is flux only
through the
external end face.
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